OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18717–18722

Interferometric detection of extensional modes of GaN nanorods array

Pierre-Adrien Mante, Cheng-Ying Ho, Li-Wei Tu, and Chi-Kuang Sun  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18717-18722 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1298 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond pump probe spectroscopy experiments were carried out to observe extensional modes of GaN nanorods. Different orders of extensional modes were generated and observed following the absorption of femtosecond light pulses. This observation confirms that with a diameter on the order of 100 nm, no mechanical change is expected compared to bulk GaN. We propose and demonstrate that the detection of these modes is achieved through the modulation of the Fabry-Pérot cavity formed by the nanorod array. The extensional modes change the nanorods length and thus modify the reflectivity of the rod-array cavity.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(320.7120) Ultrafast optics : Ultrafast phenomena

ToC Category:

Original Manuscript: April 12, 2012
Revised Manuscript: June 20, 2012
Manuscript Accepted: June 24, 2012
Published: August 1, 2012

Pierre-Adrien Mante, Cheng-Ying Ho, Li-Wei Tu, and Chi-Kuang Sun, "Interferometric detection of extensional modes of GaN nanorods array," Opt. Express 20, 18717-18722 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K.-W. Hu, T.-M. Liu, K.-Y. Chung, K.-S. Huang, C.-T. Hsieh, C.-K. Sun, and C.-S. Yeh, “Efficient Near-IR Hyperthermia and Intense Nonlinear Optical Imaging Contrast on the Gold Nanorod-in-Shell Nanostructures,” J. Am. Chem. Soc.131(40), 14186–14187 (2009). [CrossRef] [PubMed]
  2. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009). [CrossRef] [PubMed]
  3. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature409(6816), 66–69 (2001). [CrossRef] [PubMed]
  4. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum.76(6), 061101 (2005). [CrossRef]
  5. E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science277(5334), 1971–1975 (1997). [CrossRef]
  6. C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, “Size Dependence of Young’s Modulus in ZnO Nanowires,” Phys. Rev. Lett.96(7), 075505 (2006). [CrossRef] [PubMed]
  7. C.-Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy, and J. E. Fischer, “Diameter-Dependent Electromechanical Properties of GaN Nanowires,” Nano Lett.6(2), 153–158 (2006). [CrossRef] [PubMed]
  8. D. A. Smith, V. C. Holmberg, D. C. Lee, and B. A. Korgel, “Young's Modulus and Size-Dependent Mechanical Quality Factor of Nanoelectromechanical Germanium Nanowire Resonators,” J. Phys. Chem. C112(29), 10725–10729 (2008). [CrossRef]
  9. S. Piscanec, M. Cantoro, A. C. Ferrari, J. A. Zapien, Y. Lifshitz, S. T. Lee, S. Hofmann, and J. Robertson, “Raman spectroscopy of silicon nanowires,” Phys. Rev. B68(24), 241312 (2003). [CrossRef]
  10. H. Lange, M. Mohr, M. Artemyev, U. Woggon, and C. Thomsen, “Direct Observation of the Radial Breathing Mode in CdSe Nanorods,” Nano Lett.8(12), 4614–4617 (2008). [CrossRef] [PubMed]
  11. J. M. Nichol, E. R. Hemesath, L. J. Lauhon, and R. Budakian, “Displacement detection of silicon nanowires by polarization-enhanced fiber-optic interferometry,” Appl. Phys. Lett.93(19), 193110 (2008). [CrossRef]
  12. M. Belov, N. J. Quitoriano, S. Sharma, W. K. Hiebert, T. I. Kamins, and S. Evoy, “Mechanical resonance of clamped silicon nanowires measured by optical interferometry,” J. Appl. Phys.103(7), 074304 (2008). [CrossRef]
  13. S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kjaer, L. Guerin, L. Nuccio, C. B. Sørensen, M. M. Nielsen, and R. Feidenhans’l, “Direct Observation of Acoustic Oscillations in InAs Nanowires,” Nano Lett.10(7), 2461–2465 (2010). [CrossRef] [PubMed]
  14. M. Hu, X. Wang, G. V. Hartland, P. Mulvaney, J. P. Juste, and J. E. Sader, “Vibrational Response of Nanorods to Ultrafast Laser Induced Heating: Theoretical and Experimental Analysis,” J. Am. Chem. Soc.125(48), 14925–14933 (2003). [CrossRef] [PubMed]
  15. S. N. Jerebtsov, A. A. Kolomenskii, H. Liu, H. Zhang, Z. Ye, Z. Luo, W. Wu, G. G. Paulus, and H. A. Schuessler, “Laser-excited acoustic oscillations in silver and bismuth nanowires,” Phys. Rev. B76(18), 184301 (2007). [CrossRef]
  16. J. Burgin, P. Langot, A. Arbouet, J. Margueritat, J. Gonzalo, C. N. Afonso, F. Vallée, A. Mlayah, M. D. Rossell, and G. Van Tendeloo, “Acoustic Vibration Modes and Electron Lattice Coupling in Self-Assembled Silver Nanocolumns,” Nano Lett.8(5), 1296–1302 (2008). [CrossRef] [PubMed]
  17. W. S. Su, Y. F. Chen, C. L. Hsiao, and L. W. Tu, “Generation of electricity in GaN nanorods induced by piezoelectric effect,” Appl. Phys. Lett.90(6), 063110 (2007). [CrossRef]
  18. L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo, and K. Y. Hsieh, “Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy,” Appl. Phys. Lett.82(10), 1601–1603 (2003). [CrossRef]
  19. C. L. Hsiao, L. W. Tu, T. W. Chi, H. W. Seo, Q. Y. Chen, and W. K. Chu, “Buffer controlled GaN nanorods growth on Si(111) substrates by plasma-assisted molecular beam epitaxy,” J. Vac. Sci. Technol. B24(2), 845–851 (2006). [CrossRef]
  20. K.-H. Lin, C.-M. Lai, C.-C. Pan, J.-I. Chyi, J.-W. Shi, S.-Z. Sun, C.-F. Chang, and C.-K. Sun, “Spatial manipulation of nanoacoustic waves with nanoscale spot sizes,” Nat. Nanotechnol.2(11), 704–708 (2007). [CrossRef] [PubMed]
  21. L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P. Pitaevskii, Theory of Elasticity (Butterworth-Heinemann, 1986).
  22. W. B. Gauster and D. H. Habing, “Electronic Volume Effect in Silicon,” Phys. Rev. Lett.18(24), 1058–1061 (1967). [CrossRef]
  23. H.-Y. Chen, H.-W. Lin, C.-Y. Wu, W.-C. Chen, J.-S. Chen, and S. Gwo, “Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region,” Opt. Express16(11), 8106–8116 (2008). [CrossRef] [PubMed]
  24. P. C. Upadhya, Q. Li, G. T. Wang, A. J. Fischer, A. J Taylor, and R. P. Prasankumar, “The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires,” Semicond. Sci. Technol.25, 024017 (2010).
  25. A. Polian, M. Grimsditch, and I. Grzegory, “Elastic constants of gallium nitride,” J. Appl. Phys.79(6), 3343–3344 (1996). [CrossRef]
  26. P. Zijlstra, A. L. Tchebotareva, J. W. M. Chon, M. Gu, and M. Orrit, “Acoustic Oscillations and Elastic Moduli of Single Gold Nanorods,” Nano Lett.8(10), 3493–3497 (2008). [CrossRef] [PubMed]
  27. O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys.71(4), 1617 (1992). [CrossRef]
  28. A. Devos, J.-F. Robillard, R. Côte, and P. Emery, “High-laser-wavelength sensitivity of the picosecond ultrasonic response in transparent thin films,” Phys. Rev. B74(6), 064114 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited