OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18772–18783

a-SiOx<Er> active photonic crystal resonator membrane fabricated by focused Ga+ ion beam

David S. L. Figueira, Luis A. M. Barea, Felipe Vallini, Paulo F. Jarschel, Rossano Lang, and Newton C. Frateschi  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18772-18783 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2427 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have fabricated thin erbium-doped amorphous silicon sub-oxide (a-SiOx<Er>) photonic crystal membrane using focused gallium ion beam (FIB). The photonic crystal is composed of a hexagonal lattice with a H1 defect supporting two quasi-doubly degenerate second order dipole states. 2-D simulation was used for the design of the structure and full 3-D FDTD (Finite-Difference Time-Domain) numerical simulations were performed for a complete analysis of the structure. The simulation predicted a quality factor for the structure of Q = 350 with a spontaneous emission enhancement of 7. Micro photoluminescence measurements showed an integrated emission intensity enhancement of ~2 times with a Q = 130. We show that the discrepancy between simulation and measurement is due to the conical shape of the photonic crystal holes and the optical losses induced by FIB milling.

© 2012 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 25, 2012
Revised Manuscript: July 17, 2012
Manuscript Accepted: July 27, 2012
Published: August 1, 2012

David S. L. Figueira, Luis A. M. Barea, Felipe Vallini, Paulo F. Jarschel, Rossano Lang, and Newton C. Frateschi, "a-SiOx<Er> active photonic crystal resonator membrane fabricated by focused Ga+ ion beam," Opt. Express 20, 18772-18783 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Pavesi and D. J. Lockwood, eds., “Silicon Photonics,” in Topics in Applied Physics (Springer, 2004).
  2. H. Ennen, J. Scheneider, G. Pomrenke, and A. Axmann, “1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon,” Appl. Phys. Lett.43(10), 943–945 (1983). [CrossRef]
  3. L. R. Tessler, “Erbium in a-Si:H,” Braz. J. Phys.29(4), 616–622 (1999). [CrossRef]
  4. J. D. B. Bradley and M. Pollnau, “Erbium-doped integrated waveguide amplifiers and lasers,” Laser Photon. Rev.5(3), 368–403 (2011). [CrossRef]
  5. O. Painter, J. Vuckovic, and A. Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B16(2), 275–285 (1999). [CrossRef]
  6. M. Makarova, V. Sih, J. Warga, R. Li, L. Dal Negro, and J. Vuckovic, “Enhanced light emission in photonic crystal nanocavities with erbium-doped silicon nanocrystals,” Appl. Phys. Lett.92(16), 161107 (2008). [CrossRef]
  7. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express18(3), 2601–2612 (2010). [CrossRef] [PubMed]
  8. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, L. Dal Negro, and J. Vuckovic, “Observation of transparency of erbium-doped silicon nitride in photonic crystal nanobeam cavities,” Opt. Express18(13), 13863–13873 (2010). [CrossRef] [PubMed]
  9. Q. Quan, I. B. Burgess, S. K. Y. Tang, D. L. Floyd, and M. Loncar, “High-Q, low index-contrast polymeric photonic crystal nanobeam cavities,” Opt. Express19(22), 22191–22197 (2011). [CrossRef] [PubMed]
  10. Y. Gong and J. Vučković, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010). [CrossRef]
  11. Y. Gong, S. Ishikawa, S. Cheng, M. Gunji, Y. Nishi, and J. Vučković, “Photoluminescence from silicon dioxide photonic crystal cavities with embedded silicon nanocrystals,” Phys. Rev. B81(23), 235317 (2010). [CrossRef]
  12. C. Kreuzer, J. Riedrich-Möller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express16(3), 1632–1644 (2008). [CrossRef] [PubMed]
  13. M. Barth, N. Nüsse, J. Stingl, B. Löchel, and O. Benson, “Emission properties of high-Q silicon nitride photonic crystal heterostructure cavities,” Appl. Phys. Lett.93(2), 021112 (2008). [CrossRef]
  14. M. Makarova, J. Vuckovic, H. Sanda, and Y. Nishi, “Silicon based photonic crystal nanocavity light emitters,” Appl. Phys. Lett.89(22), 221101 (2006). [CrossRef]
  15. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett.89(4), 041118 (2006). [CrossRef]
  16. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express15(12), 7506–7514 (2007). [CrossRef] [PubMed]
  17. D. S. L. Figueira, D. Mustafa, L. R. Tessler, and N. C. Frateschi, “Resonant structures based on amorphous silicon sub-oxide doped with Er3+ with silicon nanoclusters for an efficient emission at 1550 nm,” J. Vac. Sci. Technol. B27(6), L38– L41 (2009). [CrossRef]
  18. R. Lang, D. S. L. Figueira, F. Vallini, and N. C. Frateschi, “Highly luminescent a-SiOx<Er>/SiO2/Si multilayer structure,” IEEE Photon. J.4(4), 1115–1123 (2012). [CrossRef]
  19. A. Tandaechanurat, S. Iwamoto, M. Nomura, N. Kumagai, and Y. Arakawa, “Increase of Q-factor in photonic crystal H1-defect nanocavities after closing of photonic bandgap with optimal slab thickness,” Opt. Express16(1), 448–455 (2008). [CrossRef] [PubMed]
  20. T. M. Babinec, J. T. Choy, K. J. M. Smith, M. Khan, and M. Lončar, “Design and focused ion beam fabrication of single crystal diamond nanobeam cavities,” J. Vac. Sci. Technol. B29(1), 010601 (2011). [CrossRef]
  21. J. Riedrich-Möller, L. Kipfstuhl, C. Hepp, E. Neu, C. Pauly, F. Mücklich, A. Baur, M. Wandt, S. Wolff, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “One- and two-dimensional photonic crystal microcavities in single crystal diamond,” Nat. Nanotechnol.7(1), 69–74 (2011). [CrossRef] [PubMed]
  22. A. Chelnokov, K. Wang, S. Rowson, P. Garoche, and J.-M. Lourtioz, “Near-infrared Yablonovitelike photonic crystals by focused-ion-beam etching of macroporous silicon,” Appl. Phys. Lett.77(19), 2943–2945 (2000). [CrossRef]
  23. L. A. M. Barea, F. Vallini, A. R. Vaz, J. R. Mialichi, and N. C. Frateschi, “Low-roughness active microdisk resonators fabricated by focused ion beam,” J. Vac. Sci. Technol. B27(6), 2979–2981 (2009). [CrossRef]
  24. F. Vallini, L. A. M. Barea, E. F. dos Reis, A. A. von Zuben, and N. C. Frateschi, “Focused ion beam damages induced optical losses in optoelectronic devices,” JICS (to be published).
  25. G. S. Wiederhecker, S. Manipatruni, S. Lee, and M. Lipson, “Broadband tuning of optomechanical cavities,” Opt. Express19(3), 2782–2790 (2011). [CrossRef] [PubMed]
  26. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature478(7367), 89–92 (2011). [CrossRef] [PubMed]
  27. H. Ryu, H. Park, and Y. Lee, “Two-Dimensional Photonic Crystal Semiconductor Lasers: Computational Design, Fabrication, and Characterization,” IEEE J. Sel. Top. Quant Electron.8(4), 891–908 (2002). [CrossRef]
  28. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express17(18), 15975–15982 (2009). [CrossRef] [PubMed]
  29. D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express19(6), 5551–5558 (2011). [CrossRef] [PubMed]
  30. S. Khorasani and K. Mehrany, “Differential transfer-matrix method for solution of one-dimensional linear nonhomogeneous optical structures,” J. Opt. Soc. Am. B20(1), 91–96 (2003). [CrossRef]
  31. http://www.rsoftdesign.com/
  32. Y. Tang, A. M. Mintairov, J. L. Merz, V. Tokranov, and S. Oktyabrsky, “Characterization of 2D-Photonic Crystal Nanocavities by Polarization-Dependent and Near-Field Photoluminescence,” in Proceedings of IEEE Conference on Nanotechnology (Nagoya, Japan, 2005), pp 35–38.
  33. D. S. L. Figueira and N. C. Frateschi, “Evidences of the simultaneous presence of bow-tie and diamond scars in rare-earth doped amorphous silicon microstadium resonators,” J. Appl. Phys.103(6), 063106 (2008). [CrossRef]
  34. D. S. L. Figueira and N. C. Frateschi, Rare-earth Doped Amorphous Silicon Microdisk Resonator Structures (John Wiley & Sons, 2006)
  35. J. H. Shin, R. Serna, G. N. Hoven, A. Polman, W. G. J. H. M. Sark, and A. M. Vrendenberg, “Luminescence quenching in erbium‐doped hydrogenated amorphous silicon,” Appl. Phys. Lett.68(1), 46–48 (1996). [CrossRef]
  36. J. Kalkman, A. Tchebotareva, A. Polman, T. J. Kippengerb, B. Min, and K. J. Vahala, “Fabrication and characterization of erbium-doped toroidal microcavity lasers,” J. Appl. Phys.99(8), 83103–83111 (2006). [CrossRef]
  37. J. E. Fredrickson, C. N. Waddell, W. G. Spitzer, and G. K. Hubler, “Effects of thermal annealing on the refractive index of amorphous silicon produced by ion implantation,” Appl. Phys. Lett.40(2), 172–174 (1982). [CrossRef]
  38. J. D. Hoyland and D. Sands, “Temperature dependent refractive index of amorphous silicon determined by time-resolved reflectivity during low fluence excimer laser heating,” J. Appl. Phys.99(6), 063516 (2006). [CrossRef]
  39. F. Vallini, D. S. L. Figueira, P. F. Jarschel, L. A. M. Barea, A. A. G. V. zuben, and N. C. Frateschi, “Effects of Ga+ milling on InGaAsP Quantum Well Laser with mirrors etched by focused ion beam,” J. Vac. Sci. Technol. B27(5), 25–27 (2009). [CrossRef]
  40. E. Desurvire, in Erbium Doped Fiber Amplifiers, (John Wiley, 1994), pp. 207–306.
  41. B. Gayral and J. M. Gérard, “Photoluminescence experiment on quantum dots embedded in a large purcell-factor microcavity,” Phys. Rev. B78(23), 235306 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited