OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18784–18794

Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases

P. N. Malevich, D. Kartashov, Z. Pu, S. Ališauskas, A. Pugžlys, A. Baltuška, L. Giniūnas, R. Danielius, A. A. Lanin, A. M. Zheltikov, M. Marangoni, and G. Cerullo  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18784-18794 (2012)
http://dx.doi.org/10.1364/OE.20.018784


View Full Text Article

Enhanced HTML    Acrobat PDF (1281 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By combining tunable broadband pulse generation with the technique of nonlinear spectral compression we demonstrate a prototype scheme for highly selective detection of air molecules by backward stimulated Raman scattering. The experimental results allow to extrapolate the laser parameters required for standoff sensing based on the recently demonstrated backward atmospheric lasing.

© 2012 OSA

OCIS Codes
(190.5650) Nonlinear optics : Raman effect
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: May 29, 2012
Revised Manuscript: July 18, 2012
Manuscript Accepted: July 18, 2012
Published: August 1, 2012

Citation
P. N. Malevich, D. Kartashov, Z. Pu, S. Ališauskas, A. Pugžlys, A. Baltuška, L. Giniūnas, R. Danielius, A. A. Lanin, A. M. Zheltikov, M. Marangoni, and G. Cerullo, "Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases," Opt. Express 20, 18784-18794 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18784


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Cracknell and L. Hayes, Introduction to Remote Sensing (Taylor & Francis, 2006).
  2. C. Weitkamp, ed., Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2005).
  3. G. Turrell and J. Corset, Raman Microscopy: Developments and Applications (Academic Press, 1996).
  4. J. Kasparian and J.-P. Wolf, “A new transient SRS analysis method of aerosols and application to a nonlinear femtosecond lidar,” Opt. Commun.152(4-6), 355–360 (1998). [CrossRef]
  5. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, “Standoff detection of trace amounts of solids by nonlinear Raman spectroscopy using shaped femtosecond pulses,” Appl. Phys. Lett.92(17), 171116 (2008). [CrossRef]
  6. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemicals with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt.48(4), B17–B22 (2009). [CrossRef] [PubMed]
  7. P. R. Hemmer, R. B. Miles, P. Polynkin, T. Siebert, A. V. Sokolov, P. Sprangle, and M. O. Scully, “Standoff spectroscopy via remote generation of a backward-propagating laser beam,” Proc. Natl. Acad. Sci. U.S.A.108(8), 3130–3134 (2011). [CrossRef] [PubMed]
  8. Y. V. Rostovtsev, Z.-E. Sariyanni, and M. O. Scully, “Electromagnetically induced coherent backscattering,” Phys. Rev. Lett.97(11), 113001 (2006). [CrossRef] [PubMed]
  9. L. Yuan, K. E. Dorfman, A. M. Zheltikov, and M. O. Scully, “Plasma-assisted coherent backscattering for standoff spectroscopy,” Opt. Lett.37(5), 987–989 (2012). [CrossRef] [PubMed]
  10. A. M. Zheltikov, M. N. Shneider, and R. B. Miles, “Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere,” Appl. Phys. B83(1), 149–153 (2006). [CrossRef]
  11. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, “High-gain backward lasing in air,” Science331(6016), 442–445 (2011). [CrossRef] [PubMed]
  12. D. Kartashov, S. Ališauskas, A. Pugzlys, A. Baltuška, M. Shneider, and A. Zheltikov, “Free-space nitrogen laser from a mid-infrared filament,” in Research in Optical Sciences, OSA Technical Digest (Optical Society of America, 2012), paper HW3C.2.
  13. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B87(3), 389–393 (2007). [CrossRef]
  14. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  15. M. Maier, W. Kaiser, and J. A. Giordmaine, “Backward stimulated Raman scattering,” Phys. Rev.177(2), 580–599 (1969). [CrossRef]
  16. K. Moutzouris, E. Adler, F. Sotier, D. Träutlein, and A. Leitenstorfer, “Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source,” Opt. Lett.31(8), 1148–1150 (2006). [CrossRef] [PubMed]
  17. M. A. Marangoni, D. Brida, M. Quintavalle, G. Cirmi, F. M. Pigozzo, C. Manzoni, F. Baronio, A. D. Capobianco, and G. Cerullo, “Narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals,” Opt. Express15(14), 8884–8891 (2007). [CrossRef] [PubMed]
  18. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28(11), 2631–2654 (1992). [CrossRef]
  19. E. Pontecorvo, S. M. Kapetanaki, M. Badioli, D. Brida, M. Marangoni, G. Cerullo, and T. Scopigno, “Femtosecond stimulated Raman spectrometer in the 320-520nm range,” Opt. Express19(2), 1107–1112 (2011). [CrossRef] [PubMed]
  20. J. W. Hahn and E. S. Lee, “Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,” J. Opt. Soc. Am. B12(6), 1021–1027 (1995). [CrossRef]
  21. G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, “90 GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier,” Opt. Lett.36(15), 2755–2757 (2011). [CrossRef] [PubMed]
  22. S. Brunsgaard Hansen, R. W. Berg, and E. H. Stenby, “Raman spectroscopic studies of methane–ethane mixtures as a function of pressure,” Appl. Spectrosc.55(6), 745–749 (2001). [CrossRef]
  23. H. W. Schrötter and H. W. Klöckner, “Raman scattering cross sections in gases and liquids,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer, 1979).
  24. (dσ/dΩ)N2 ≈4.32 × 10−31 cm2/srad, (dσ/dΩ)O2 ≈4.75 × 10−31 cm2/srad, (dσ/dΩ)CO ≈4.3 × 10−31 cm2/srad, (dσ/dΩ)SO2 ≈17 × 10−31 cm2/srad, (dσ/dΩ)NO2 ≈1.9 × 10−31 cm2/srad, and (dσ/dΩ)NH3 ≈28 × 10−31 cm2/srad.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited