OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18795–18802

Pixelated high-index ring Bragg fibers

Assaad Baz, Géraud Bouwmans, Laurent Bigot, and Yves Quiquempois  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18795-18802 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1722 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of Anti Resonant Reflecting Optical Waveguide (ARROW) fiber with a low refractive index contrast is reported. This waveguide is similar to a Bragg fiber for which the high index rings are replaced by discontinuous rings made of circular High Index Inclusions (HII). As compared to conventional Bragg fibers, such a new structure enables true Photonic BandGap (PBG) guidance and limits the number of cladding modes located within the high index regions, thus enhancing the guiding properties. A Mode Field Diameter (MFD) of 26 μm is reported at a wavelength of 1400 nm. Single Mode (SM) behavior is also observed beyond 1400 nm for a 1 m-long fiber.

© 2012 OSA

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 1, 2012
Revised Manuscript: July 12, 2012
Manuscript Accepted: July 15, 2012
Published: August 1, 2012

Assaad Baz, Géraud Bouwmans, Laurent Bigot, and Yves Quiquempois, "Pixelated high-index ring Bragg fibers," Opt. Express 20, 18795-18802 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14, 69–81 (2006). [CrossRef] [PubMed]
  2. K. Saitoh, Y. Tsuchida, L. Rosa, M. Koshiba, F. Poli, A. Cucinotta, S. Selleri, M. Pal, M. Paul, D. Ghosh, and S. Bhadra, “Design of all-solid leakage channel fibers with large mode area and low bending loss,” Opt. Express17, 4913–4919 (2009). [CrossRef] [PubMed]
  3. S. R. Petersen, T. T. Alkeskjold, F. Poli, E. Coscelli, M. M. Jorgensen, M. Laurila, J. Lægsgaard, and J. Broeng, “Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths,” Opt. Express20, 6010–6020 (2012). [CrossRef] [PubMed]
  4. T. Murao, K. Saitoh, and M. Koshiba, “Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding,” Opt. Express19, 1713–1727 (2011). [CrossRef] [PubMed]
  5. S. S. Aleshkina, M. E. Likhachev, A. D. Pryamikov, D. A. Gaponov, A. N. Denisov, M. M. Bubnov, M. Y. Salganskii, A. Y. Laptev, A. N. Guryanov, Y. A. Uspenskii, N. L. Popov, and S. Février, “Very-large-mode-area photonic bandgap Bragg fiber polarizing in a wide spectral range,” Opt. Lett.36, 3566–3568 (2011). [CrossRef] [PubMed]
  6. S. L. Semjonov, O. N. Egorova, A. D. Pryamikov, D. A. Gaponov, A. S. Biriukov, E. M. Dianov, M. Y. Salganskii, V. F. Khopin, and A. N. Guryanov, “Mode structure of large mode area all-solid photonic bandgap fiber,” CLEO, cmhh6 (2009).
  7. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27, 1592–1594 (2002). [CrossRef]
  8. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68, 1196–1201 (1978). [CrossRef]
  9. K. J. Rowland, S. Afshar V., and T. M. Monro, “Novel low-loss bandgaps in all-silica bragg fibers,” J. Lightwave Technol.26, 43–51 (2008). [CrossRef]
  10. F. Gérôme, S. Février, A. D. Pryamikov, J. L. Auguste, R. Jamier, J. M. Blondy, M. E. Likhachev, M. M. Bubnov, S. L. Semjonov, and E. M. Dianov, “Highly dispersive large mode area photonic bandgap fiber,” Opt. Lett.32, 1208–1210 (2007). [CrossRef] [PubMed]
  11. S. Février, R. Jamier, J. M. Blondy, S. L. Semjonov, M. E. Likhachev, M. M. Bubnov, E. M. Dianov, V. F. Khopin, M. Y. Salganskii, and A. N. Guryanov, “Low loss large mode area Bragg fiber,” ECOC6, 41–42 (2005).
  12. C. Baskiotis, Y. Jaoun, R. Gabet, G. Bouwmans, Y. Quiquempois, M. Douay, and P. Sillard, “Microbending behavior of large-effective-area Bragg fibers,” Opt. Lett.34, 3490–3492 (2009). [CrossRef] [PubMed]
  13. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton Univ. Press, 2008).
  14. K. Otsuka, “Self-induced phase turbulence and chaotic itinerancy in coupled laser systems,” Phys. Rev. Lett.65, 329–332 (1990). [CrossRef] [PubMed]
  15. A. Argyros, I. M. Bassett, M. A. van Eijkelenborg, and M. C. J. Large, “Analysis of ring-structured Bragg fibres for single TE mode guidance,” Opt. Express12, 2688–2698 (2004). [CrossRef] [PubMed]
  16. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (¡ 20 dB/km) around 1550 nm,” Opt. Express13, 8452–8459 (2005). [CrossRef] [PubMed]
  17. Y. Ould Agha, F. Zolla, A. Nicollet, and S. Guenneau, “On the use of PML for the computation of leaky modes,” Compel27, 95–109 (2008).
  18. A. Bétourne, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express15, 316–324 (2007). [CrossRef] [PubMed]
  19. S. Ghosh, S. Dasgupta, R. K. Varshney, D. J. Richardson, and B. P. Pal, “Design of a Bragg fiber with large mode area for mid-infrared applications,” Opt. Express19, 21295–21304 (2011). [CrossRef] [PubMed]
  20. E. Marcatili and R. Schmeltzer, “Hollow metallic and Dielectric Waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  21. J. L. Archambault, R. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Light-wave Technol.11, 416–423 (1993). [CrossRef]
  22. L. Bigot, G. Bouwmans, Y. Quiquempois, A Le Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express17, 10105–10112 (2009). [CrossRef] [PubMed]
  23. F. Benabid, P. J. Roberts, F. Couny, and P. S. Light, “Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells,” J. Eur. Opt. Soc.4, 09004–09009 (2009). [CrossRef]
  24. T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. St. J. Russell, “Scaling laws and vector effects in bandgap- guiding fibres,” Opt. Express12, 69–74 (2004). [CrossRef] [PubMed]
  25. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. DiGiovanni, “Group-velocity dispersion measurements in a photonic bandgap fiber,” J. Opt. Soc. Am. B20, 1611–1615 (2003). [CrossRef]
  26. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett.92, 061113–061115 (2008). [CrossRef]
  27. R. Goto, I. Fsaifes, A. Baz, L. Bigot, K. Takenaga, S. Matsuo S, and S. D. Jackson, “UV-induced Bragg grating inscription into single-polarization all-solid hybrid microstructured optical fiber,” Opt. Express19, 13525–13530 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited