OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18827–18835

Self-accelerating self-trapped nonlinear beams of Maxwell's equations

Ido Kaminer, Jonathan Nemirovsky, and Mordechai Segev  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18827-18835 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1472 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.

© 2012 OSA

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(260.2110) Physical optics : Electromagnetic optics
(350.7420) Other areas of optics : Waves
(190.6135) Nonlinear optics : Spatial solitons
(050.6624) Diffraction and gratings : Subwavelength structures
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Nonlinear Optics

Original Manuscript: June 15, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 16, 2012
Published: August 1, 2012

Ido Kaminer, Jonathan Nemirovsky, and Mordechai Segev, "Self-accelerating self-trapped nonlinear beams of Maxwell's equations," Opt. Express 20, 18827-18835 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32(8), 979–981 (2007). [CrossRef] [PubMed]
  2. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of Accelerating Airy Beams,” Phys. Rev. Lett.99(21), 213901 (2007). [CrossRef] [PubMed]
  3. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics2(11), 675–678 (2008). [CrossRef]
  4. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved Plasma Channel Generation Using Ultraintense Airy Beams,” Science324(5924), 229–232 (2009). [CrossRef] [PubMed]
  5. I. Kaminer, M. Segev, and D. N. Christodoulides, “Self-Accelerating Self-Trapped Optical Beams,” Phys. Rev. Lett.106(21), 213903 (2011). [CrossRef] [PubMed]
  6. A. Lotti, D. Faccio, A. Couairon, D. G. Papazoglou, P. Panagiotopoulos, D. Abdollahpour, and S. Tzortzakis, “Stationary nonlinear Airy beams,” Phys. Rev. A84(2), 021807 (2011). [CrossRef]
  7. R. Bekenstein and M. Segev, “Self-accelerating optical beams in highly nonlocal nonlinear media,” Opt. Express19(24), 23706–23715 (2011). [CrossRef] [PubMed]
  8. I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, “Experimental Observation of Self-Accelerating Beams in Quadratic Nonlinear Media,” Phys. Rev. Lett.108(11), 113903 (2012). [CrossRef] [PubMed]
  9. Y. Hu, S. Huang, P. Zhang, C. Lou, J. Xu, and Z. Chen, “Persistence and breakdown of Airy beams driven by an initial nonlinearity,” Opt. Lett.35(23), 3952–3954 (2010). [CrossRef] [PubMed]
  10. R. Chen, C. Yin, X. Chu, and H. Wang, “Effect of Kerr nonlinearity on an Airy beam,” Phys. Rev. A82(4), 043832 (2010). [CrossRef]
  11. Y. Fattal, A. Rudnick, and D. M. Marom, “Soliton shedding from Airy pulses in Kerr media,” Opt. Express19(18), 17298–17307 (2011). [CrossRef] [PubMed]
  12. Y. Hu, Z. Sun, D. Bongiovanni, D. Song, C. Lou, J. Xu, Z. Chen, and R. Morandotti, “Reshaping the trajectory and spectrum of nonlinear Airy beams,” to appear in Opt. Lett. (2012).
  13. J. A. Giannini and R. I. Joseph, “The role of the second Painlevé transcendent in nonlinear optics,” Phys. Lett. A141(8-9), 417–419 (1989). [CrossRef]
  14. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47(3), 264–267 (1979). [CrossRef]
  15. A. V. Novitsky and D. V. Novitsky, “Nonparaxial Airy beams: role of evanescent waves,” Opt. Lett.34(21), 3430–3432 (2009). [CrossRef] [PubMed]
  16. L. Carretero, P. Acebal, S. Blaya, C. García, A. Fimia, R. Madrigal, and A. Murciano, “Nonparaxial diffraction analysis of Airy and SAiry beams,” Opt. Express17(25), 22432–22441 (2009). [CrossRef] [PubMed]
  17. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar, “Generation and near-field imaging of airy surface plasmons,” Phys. Rev. Lett.107(11), 116802 (2011). [CrossRef] [PubMed]
  18. E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett.106(21), 213902 (2011). [CrossRef] [PubMed]
  19. L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P. A. Lacourt, and J. M. Dudley, “Arbitrary accelerating micron-scale caustic beams in two and three dimensions,” Opt. Express19(17), 16455–16465 (2011). [CrossRef] [PubMed]
  20. I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, “Nondiffracting Accelerating Wave Packets of Maxwell’s Equations,” Phys. Rev. Lett.108(16), 163901 (2012). [CrossRef] [PubMed]
  21. F. Courvoisier, A. Mathis, L. Froehly, R. Giust, L. Furfaro, P. A. Lacourt, M. Jacquot, and J. M. Dudley, “Sending femtosecond pulses in circles: highly nonparaxial accelerating beams,” Opt. Lett.37(10), 1736–1738 (2012). [CrossRef] [PubMed]
  22. I. Kaminer, R. Bekenstein, and M. Segev, CLEO: QELS-Fundamental Science, OSA Technical Digest (Optical Society of America, 2012), paper QM3E.3. The presentation included experimental results.
  23. This concept of nonlinear accelerating beams of Maxwell's equations was first proposed in Nonlinear Photonics Topical Meeting, paper NTu3C.7, submitted 27/02/2012.
  24. O. Peleg, M. Segev, G. Bartal, D. N. Christodoulides, and N. Moiseyev, “Nonlinear Waves in Subwavelength Waveguide Arrays: Evanescent Bands and the “Phoenix Soliton”,” Phys. Rev. Lett.102(16), 163902 (2009). [CrossRef] [PubMed]
  25. M. A. Porras, A. Parola, D. Faccio, A. Dubietis, and P. Trapani, “Nonlinear Unbalanced Bessel Beams: Stationary Conical Waves Supported by Nonlinear Losses,” Phys. Rev. Lett.93(15), 153902 (2004). [CrossRef] [PubMed]
  26. G. I. Stegeman and M. Segev, “Optical Spatial Solitons and Their Interactions: Universality and Diversity,” Science286(5444), 1518–1523 (1999). [CrossRef] [PubMed]
  27. I. Kaminer, Y. Lumer, M. Segev, and D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express19(23), 23132–23139 (2011). [CrossRef] [PubMed]
  28. G. Fibich and S. Tsynkov, “High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering,” J. Comput. Phys.171(2), 632–677 (2001). [CrossRef]
  29. G. Fibich, “Small Beam Nonparaxiality Arrests Self-Focusing of Optical Beams,” Phys. Rev. Lett.76(23), 4356–4359 (1996). [CrossRef] [PubMed]
  30. M. D. Feit and I. A. Fleck., “Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams,” J. Opt. Soc. Am. B5(3), 633–640 (1988). [CrossRef]
  31. H. E. Hemandez-Figueroa, “Nonlinear nonparaxial beam-propagation method,” Electron. Lett.30(4), 352–353 (1994). [CrossRef]
  32. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Does the nonlinear Schrödinger equation correctly describe beam propagation?” Opt. Lett.18(6), 411–413 (1993). [CrossRef] [PubMed]
  33. P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, “Propagation properties of non-paraxial spatial solitons,” J. Mod. Opt.47, 1877–1886 (2000).
  34. O. Cohen, R. Uzdin, T. Carmon, J. W. Fleischer, M. Segev, and S. Odoulov, “Collisions between Optical Spatial Solitons Propagating in Opposite Directions,” Phys. Rev. Lett.89(13), 133901 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited