OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18846–18860

Multifocus color image fusion based on quaternion curvelet transform

Liqiang Guo, Ming Dai, and Ming Zhu  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18846-18860 (2012)
http://dx.doi.org/10.1364/OE.20.018846


View Full Text Article

Enhanced HTML    Acrobat PDF (2499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multifocus color image fusion is an active research area in image processing, and many fusion algorithms have been developed. However, the existing techniques can hardly deal with the problem of image blur. This study present a novel fusion approach that integrates the quaternion with traditional curvelet transform to overcome the above disadvantage. The proposed method uses a multiresolution analysis procedure based on the quaternion curvelet transform. Experimental results show that the proposed method is promising, and it does significantly improve the fusion quality compared to the existing fusion methods.

© 2012 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(350.2660) Other areas of optics : Fusion

ToC Category:
Image Processing

History
Original Manuscript: June 13, 2012
Revised Manuscript: July 18, 2012
Manuscript Accepted: July 24, 2012
Published: August 1, 2012

Citation
Liqiang Guo, Ming Dai, and Ming Zhu, "Multifocus color image fusion based on quaternion curvelet transform," Opt. Express 20, 18846-18860 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18846


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Li, M. He, and M. Roux, “Multifocus image fusion based on redundant wavelet transform,” IET Image Process. 4(4), 283–293 (2010). [CrossRef]
  2. S. Li, J. T. Kwok, and Y. Wang, “Multifocus image fusion using artificial neutral networks,” Pattern Recogn. Lett. 23(8), 985–997 (2002). [CrossRef]
  3. Z. Wang, Y. Ma, and J. Gu, “Multi-focus image fusion using PCNN,” Pattern Recogn. 43(6), 2003–2016 (2010). [CrossRef]
  4. Q. Zhang and B. Guo, “Multifocus image fusion using the nonsubsampled contourlet transform,” Signal Process. 89(7), 1334–1346 (2009). [CrossRef]
  5. W. Huang and Z. L. Jing, “Multifocus image fusion using pulse coupled neutral network,” Pattern Recogn. lett. 28(9), 1123–1132 (2007). [CrossRef]
  6. N. Wang, Y. Ma, and J. Gu, “Multi-focus image fusion algorithm based on shearlets,” Chin. Opt. Lett. 9(4), 041001 (2011).
  7. N. Ma, L. Luo, Z. Zhou, and M. Liang, “A Multifocus image fusion in nonsubsampled contourlet domain with variational fusion stategy,” Proc. SPIE 8004, 800411 (2011). [CrossRef]
  8. W. Yajie and X. Xinhe, “A multifocus image fusion new method based on multidecision,” Proc. SPIE 6357, 63570G (2006). [CrossRef]
  9. R. Nava, B. E. Ramírez, and G. Cristóbal, “A novel multi-focus image fusion algorithm based on feature extraction and wavelets,” Proc. SPIE 7000, 700028 (2008). [CrossRef]
  10. I. De and B. Chanda, “A simple and efficient algorithm for multifocus image fusion using morphological wavelets,” Signal Process. 86(5), 924–936 (2006). [CrossRef]
  11. S. Li and B. Yang, “Multifocus image fusion using region segmentation and spatial frequency,” Image Vis. Comput. 26(7), 971–979 (2008). [CrossRef]
  12. H. Li, Y. Chai, H. Yin, and G. Liu, “Multifocus image fusion and denoising scheme based on homogeneity similarity,” Opt. Commun. 285(2), 91–100 (2012). [CrossRef]
  13. Y. Chai, H. Li, and Z. Li, “Multifocus image fusion scheme using focused region detection and multiresolution,” Opt. Commun. 284(19), 4376–4389 (2011). [CrossRef]
  14. S. Gabarda and G. Cristóbal, “Multifocus image fusion through pseudo-Wigner distribution,” Opt. Eng. 44(4), 047001 (2005). [CrossRef]
  15. P. L. Lin and P. Y. Huang, “Fusion methods based on dynamic-segmented morphological wavelet or cut and paste for multifocus images,” Signal Process. 88(6), 1511–1527 (2008). [CrossRef]
  16. Y. Chai, H. F. Li, and M. Y. Guo, “Multifocus image fusion scheme based on features of multiscale products and PCNN in lifting stationary wavelet domain,” Opt. Commun. 284(5), 1146–1158 (2011). [CrossRef]
  17. R. Redonodo, F. S?roubek, S. Fischer, and G. Gristóbal, “Multifocus image fusion using the log-Gabor transform and a Multisize Windows technique,” Inform. Fusion 10(2), 163–171 (2009). [CrossRef]
  18. F. Luo, B. Lu, and C. Miao, “Multifocus image fusion with trace-based structure tensor,” Proc. SPIE 8200, 82001G (2011). [CrossRef]
  19. A. Baradarani, Q. M. J. Wu, M. Ahmadi, and P. Mendapara, “Tunable halfband-pair wavelet filter banks and application to multifocus image fusion,” Pattern Recogn. 45(2), 657–671 (2012). [CrossRef]
  20. Y. Chai, H. Li, and X. Zhang, “Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain,” Optik 123(7), 569–581 (2012). [CrossRef]
  21. H. Zhao, Q. Li, and H. Feng, “Multi-focus color image fusion in the HSI space using the sum-modified-laplacian and the coarse edge map,” Image Vis. Comput. 26(9), 1285–1295 (2008). [CrossRef]
  22. W. Huang and Z. Jing, “Evaluation of focus measures in multi-focus image fusion,” Pattern Recogn. Lett. 28(9), 493–500 (2007). [CrossRef]
  23. R. Maruthi, “Spatial Domain Method for Fusing Multi-Focus Images using Measure of Fuzziness,” Int. J. Comput. Appl. 20(7), 48–57 (2011).
  24. H. Shi and M. Fang, “Multi-focus Color Image Fusion Based on SWT and IHS,” in Proceedings of IEEE Conference on Fuzzy Systems and Knowledge Discovery (IEEE2007), 461–465. [CrossRef]
  25. Y. Chen, L. Wang, Z. Sun, Y. Jiang, and G. Zhai, “Fusion of color microscopic images based on bidimensional empirical mode decomposition,” Opt. Express 18(21), 21757–21769 (2010). [CrossRef] [PubMed]
  26. H. Li, B. S. Manjunath, and S. K. Mitra, “Multisensor image fusion using the wavelet transform,” Graphical Models & Image Process. 57(3), 235–245 (1995). [CrossRef] [PubMed]
  27. Z. Zhang and R. S. Blum, “A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application,” Proc. IEEE. 87(8), 1315–1326 (1999). [CrossRef]
  28. K. Amolius, Y. Zhang, and P. Dare, “Wavelet based image fusion techniques–An introduction, review and comparison,” Photogramm. Eng. Remote Sens. 62(1), 249–263 (2007). [CrossRef]
  29. S. J. Sangwine, “Fourier transforms of colour images using quaternion, or hypercomplex numbers,” Electron. Lett. 32(1), 1979–1980 (1996). [CrossRef]
  30. S. C. Pei and C. M. Cheng, “Color image processing by using binary quaternion-moment-preserving thresholding technique,” IEEE Trans. Signal Process. 8(5), 614–628 (1999).
  31. T. A. Ell and S. J. Sangwine, “Hypercomplex Fourier transforms of color images,” IEEE Trans. Image Process. 16(1), 22–35 (2007). [CrossRef] [PubMed]
  32. D. S. Alexiadis and G. D. Sergiadis, “Estimation of motions in color image sequences using hypercomplex Fourier transforms,” IEEE Trans. Sig. Process. 18(1), 168–186 (2009).
  33. S. J. Sangwine, T. A. Ell, and N. L. Bihan, “Fundamental representations and algebraic properties of biquater-nions or complexified quaternions,” Adv. Appl. Clifford Algebras 21(3), 607–636 (2011). [CrossRef]
  34. L. Q. Guo and M. Zhu, “Quaternion Fourier-Mellin moments for color images,” Pattern Recogn. 44(2), 187–195 (2011). [CrossRef]
  35. B. J. Chen, H. Z. Shu, H. Zhang, G. Chen, C. Toumoulin, J. L. Dillenseger, and L. M. Luo, “Quaternion Zernike moments and their invariants for color image analysis and object recognition,” Signal Process. 92(2), 308–318 (2012). [CrossRef]
  36. S. Sangwine and N. L. Bihan, “Quaternion toolbox for Matlab,” http://qtfm.sourceforge.net
  37. E. J. Candès and D. L. Donoho, “Continuous curvelet transform I. Resolution of the wavefront set,” Appl. Comput. Harmon. Anal. 19(2), 162–197 (2005). [CrossRef]
  38. E. J. Candès and D. L. Donoho, “Continuous curvelet transform II. Discretization and frames,” Appl. Comput. Harmon. Anal. 19(2), 198–222 (2005). [CrossRef]
  39. E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “The curvelet transform website,” http://www.curvelet.org
  40. E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying, “Fast discrete curvelet transorms,” Multiscale Model. Simul. 5(3), 861–899 (2006). [CrossRef]
  41. Y. Yuan, J. Zhang, B. Chang, and Y. Han, “Objective quality evaluation of visible and infrared color fusion image,” Opt. Eng. 50(3), 033202 (2011). [CrossRef]
  42. M. Douze, “Blur image data,” http://lear.inrialpes.fr/people/vandeweijer/data.html
  43. Helicon Soft, “Helicon Focus Sample images,” http://www.heliconsoft.com/focus_samples.html

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited