OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18876–18886

High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities

S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Bazin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18876-18886 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (959 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on far-field measurements of L3 photonic crystal (PhC) cavities with high quality beaming. This is achieved by means of the so-called “band folding” technique, in which a modulation of the radius of specific holes surrounding the cavity is introduced. Far-field patterns are measured from photoluminescence of quantum wells embedded in the PhC. A very good agreement between experimental results and simulated radiation patterns has been found. Laser effect is demonstrated in the beaming cavity with a threshold comparable to the regular one. In addition, free-space input coupling to this cavity has been achieved. In order to fully analyze the coupling efficiency, we generalize the approach developed in S. Fan, et al., [J. Opt. Soc. Am. A 20, 569 (2003)], relaxing the hypothesis of mirror symmetry. The obtained coupling efficiencies are about 15% with quality factors (Q) exceeding 104. These results further validate the “folding” technique on L3 cavities for nanocavity realization with efficient free-space coupling and high Q factors.

© 2012 OSA

OCIS Codes
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 7, 2012
Revised Manuscript: July 1, 2012
Manuscript Accepted: July 1, 2012
Published: August 2, 2012

S. Haddadi, L. Le-Gratiet, I. Sagnes, F. Raineri, A. Bazin, K. Bencheikh, J. A. Levenson, and A. M. Yacomotti, "High quality beaming and efficient free-space coupling in L3 photonic crystal active nanocavities," Opt. Express 20, 18876-18886 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425, 944–947 (2003). [CrossRef] [PubMed]
  2. W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, and W.-H. Chang, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett.96, 117401 (2006). [CrossRef] [PubMed]
  3. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photon.5, 297–300 (2011). [CrossRef]
  4. M. Brunstein, A. M. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and J. A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 031803(R) (2012). [CrossRef]
  5. M. Brunstein, A. M. Yacomotti, R. Braive, S. Barbay, I. Sagnes, L. Bigot, L. Le-Gratiet, and J. A. Levenson, “All-optical, all-fibered ultrafast switching in 2-D InP-based photonic crystal nanocavity,” IEEE Photon. J.2, 642–651 (2010). [CrossRef]
  6. I. Hwang, S. Kim, J. Yang, S. Kim, S. Lee, and Y. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett.87, 131107 (2005). [CrossRef]
  7. M. Brunstein, R. Braive, R. Hostein, A. Beveratos, I. Rober-Philip, I. Sagnes, T. J. Karle, A. M. Yacomotti, J. A. Levenson, V. Moreau, G. Tessier, and Y. De Wilde, “Thermo-optical dynamics in an optically pumped photonic crystal nano-cavity,” Opt. Express17, 17118–17129 (2009). [CrossRef] [PubMed]
  8. F. Romer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B25, 31–39 (2008). [CrossRef]
  9. S.-H. Kim, S.-K. Kim, and Y.-H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B73, 235117 (2006). [CrossRef]
  10. J. Kang, M. Seo, S. Kim, S. Kim, M. Kim, H. Park, K. Kim, and Y. Lee, “Polarized vertical beaming of an engineeredhexapole mode laser,” Opt. Express17, 6074–6081 (2009). [CrossRef] [PubMed]
  11. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79, 041101(R) (2009). [CrossRef]
  12. S. L. Portalupi, M. Galli, C. Reardon, T. F. Krauss, L. O’Faolain, L. C. Andreani, and D. Gerace, “Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor,” Opt. Express18, 16064–16073 (2010). [CrossRef] [PubMed]
  13. N.-V.-Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B82, 075120 (2010). [CrossRef]
  14. M. Narimatsu, S. Kita, H. Abe, and T. Baba, “Enhancement of vertical emission in photonic crystal nanolasers,” Appl. Phys. Lett.100, 121117 (2012). [CrossRef]
  15. M. Brunstein, T. J. Karle, I. Sagnes, F. Raineri, J. Bloch, Y. Halioua, G. Beaudoin, L. Le Gratiet, J. A. Levenson, and A. M. Yacomotti, “Radiation patterns from coupled photonic crystal nanocavities,” Appl. Phys. Lett.99, 111101 (2011). [CrossRef]
  16. Commercial FDTD software from Lumerical Solutions Inc. has been used for the 3D-FDTD simulations.
  17. http://ab-initio.mit.edu/wiki/index.php/Harminv
  18. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano Resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94, 071101 (2009). [CrossRef]
  19. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited