OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18925–18930

Spectroscopic study of transparency current in mid-infrared quantum cascade lasers

Dmitry G. Revin, Randa S. Hassan, Andrey B. Krysa, Yongrui Wang, Alexey Belyanin, Kenneth Kennedy, Chris N. Atkins, and John W. Cockburn  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18925-18930 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report measurements which give direct insight into the origins of the transparency current for λ ~5 µm In0.6Ga0.4As/In0.42Al0.58As quantum cascade lasers in the temperature range of 80-280 K. The transparency current values have been found from broadband transmission measurements through the laser waveguides under sub-threshold operating conditions. Two active region designs were compared. The active region of the first laser is based on double-LO-phonon relaxation approach, while the second device has only one lower level, without specially designed resonant LO-phonon assisted depopulation. It is shown that transparency current contributes more than 70% to the magnitude of threshold current at high temperatures for both designs.

© 2012 OSA

OCIS Codes
(300.6340) Spectroscopy : Spectroscopy, infrared
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 23, 2012
Revised Manuscript: July 23, 2012
Manuscript Accepted: July 24, 2012
Published: August 2, 2012

Dmitry G. Revin, Randa S. Hassan, Andrey B. Krysa, Yongrui Wang, Alexey Belyanin, Kenneth Kennedy, Chris N. Atkins, and John W. Cockburn, "Spectroscopic study of transparency current in mid-infrared quantum cascade lasers," Opt. Express 20, 18925-18930 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science264(5158), 553–556 (1994). [CrossRef] [PubMed]
  2. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C.K.N. Patel, “Tapered 4.7 μm quantum cascade lasers with highly strained active region composition delivering over 4.5 Watts of continuous wave optical power,” Opt. Express20(4), 4382–4388 (2012). [CrossRef] [PubMed]
  3. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett.98(18), 181102 (2011). [CrossRef]
  4. R. P. Green, A. B. Krysa, J. S. Roberts, D. G. Revin, L. R. Wilson, E. A. Zibik, W. H. Ng, and J. W. Cockburn, “Room temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett.83(10), 1921–1922 (2003). [CrossRef]
  5. D. G. Revin, L. R. Wilson, J. W. Cockburn, A. B. Krysa, J. S. Roberts, and R. J. Airey, “Intersubband spectroscopy of quantum cascade lasers under operating conditions,” Appl. Phys. Lett.88(13), 131105 (2006). [CrossRef]
  6. H. Willenberg, G. H. Döhler, and J. Faist, “Intersubband gain in a Bloch oscillator and quantum cascade laser,” Phys. Rev. B67(8), 085315 (2003). [CrossRef]
  7. R. Terazzi, T. Gresch, M. Giovannini, N. Hoyler, N. Sekine, and J. Faist, “Bloch gain in quantum cascade lasers,” Nat. Phys.3(5), 329–333 (2007). [CrossRef]
  8. D. G. Revin, M. R. Soulby, J. W. Cockburn, Q. Yang, C. Manz, and J. Wagner, “Dispersive gain and loss in midinfrared quantum cascade laser,” Appl. Phys. Lett.92(8), 081110 (2008). [CrossRef]
  9. A. Wittmann, T. Gresch, E. Gini, L. Hvozdara, N. Hoyler, M. Giovannini, and J. Faist, “High-performance bound-to-continuum quantum cascade lasers for broad-gain applications,” IEEE J. Quantum Electron.44(1), 36–40 (2008). [CrossRef]
  10. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflügl, L. Diehl, F. Capasso, and C.K.N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coating,” Appl. Phys. Lett.95(15), 151112 (2009). [CrossRef]
  11. J. S. Yu, S. Slivken, A. J. Evans, and M. Razeghi, “High-performance continuous wave operation of λ ~ 4.6 µm quantum cascade lasers above room temperature,” IEEE J. Quantum Electron.44(8), 747–754 (2008). [CrossRef]
  12. E. Benveniste, S. Laurent, A. Vasanelli, C. Manquest, C. Sirtori, F. Teulon, M. Carras, and X. Marcadet, “Measurement of gain and losses of a midinfared quantum cascade lasers by wavelength chirping spectroscopy,” Appl. Phys. Lett.94(8), 081110 (2009). [CrossRef]
  13. Y. Dikmelik, J. B. Khurgin, M. D. Escarra, P. Q. Liu, and C. F. Gmachl, “Temperature dependence of the transparency current density in mid-infrared quantum cascade lasers,” in Conference on Lasers and Electro-Optics 2011, Technical Digest (CD) (Optical Society of America, Washington, DC, 2011), paper CTuC2.
  14. C. Sirtori, H. Page, C. Becker, and V. Ortiz, “GaAs-AlGaAs quantum cascade lasers: Physics, Technology, and Prospects,” IEEE J. Quantum Electron.38(6), 547–558 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited