OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18931–18936

An integrated tunable interferometer controlled by liquid diffusion in polydimethylsiloxane

Yun Zou, Zhenhua Shen, Xiang Chen, Ziyun Di, and Xianfeng Chen  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18931-18936 (2012)
http://dx.doi.org/10.1364/OE.20.018931


View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrated an integrated tunable interferometer in Polydimethylsiloxane (PDMS). In contrast to most on-chip interferometers which require complex fabrication, our design is realized by conventional soft lithography fabrication. The optical path difference occurs during propagation across a fluid-fluid interface. The diffusion level of the two miscible liquids which is controlled by liquid flow rates provides tunability. Different ratio of two liquid flow rates result in the interference spectral shift. Interference peak numbers are varied with flow rate ratio of two liquids. Mutual diffusion between two liquids changes the profile of the refractive index across the fluidic channel. The two arms structure of our design provides convenience for sensing and detection in biology system. This device not only offers the convenience for microfluidic networks but also paves the way for sensing in chemical microreactors.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.5470) Materials : Polymers
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 4, 2012
Revised Manuscript: July 23, 2012
Manuscript Accepted: July 23, 2012
Published: August 2, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Yun Zou, Zhenhua Shen, Xiang Chen, Ziyun Di, and Xianfeng Chen, "An integrated tunable interferometer controlled by liquid diffusion in polydimethylsiloxane," Opt. Express 20, 18931-18936 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18931


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature442(7101), 381–386 (2006). [CrossRef] [PubMed]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics1(2), 106–114 (2007). [CrossRef]
  3. N. T. Nguyen, “Micro-optofluidic Lenses: A review,” Biomicrofluidics4(3), 031501 (2010). [CrossRef] [PubMed]
  4. Z. Li and D. Psaltis, “Optofluidic dye lasers,” Microfluid. Nanofluid.4(1–2), 145–158 (2008). [CrossRef]
  5. D. B. Wolfe, D. V. Vezenov, B. T. Mayers, G. M. Whitesides, R. S. Conroy, and M. G. Prentiss, “Diffusion-controlled optical elements for optofluidics,” Appl. Phys. Lett.87(18), 181105 (2005). [CrossRef]
  6. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011). [CrossRef]
  7. M. B. Christiansen, J. M. Lopacinska, M. H. Jakobsen, N. A. Mortensen, M. Dufva, and A. Kristensen, “Polymer photonic crystal dye lasers as Optofluidic Cell Sensors,” Opt. Express17(4), 2722–2730 (2009). [CrossRef] [PubMed]
  8. R. Shamai and U. Levy, “On chip tunable micro ring resonator actuated by electrowetting,” Opt. Express17(2), 1116–1125 (2009). [CrossRef] [PubMed]
  9. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, “Compact resonant integrated microfluidic refractometer,” Appl. Phys. Lett.88(9), 093513 (2006). [CrossRef]
  10. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010). [CrossRef] [PubMed]
  11. A. Crespi, Y. Gu, B. Ngamsom, H. J. W. M. Hoekstra, C. Dongre, M. Pollnau, R. Ramponi, H. H. van den Vlekkert, P. Watts, G. Cerullo, and R. Osellame, “Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection,” Lab Chip10(9), 1167–1173 (2010). [CrossRef] [PubMed]
  12. M. I. Lapsley, I.-K. Chiang, Y. B. Zheng, X. Y. Ding, X. Mao, and T. J. Huang, “A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection,” Lab Chip11(10), 1795–1800 (2011). [CrossRef] [PubMed]
  13. L. K. Chin, A. Q. Liu, Y. C. Soh, C. S. Lim, and C. L. Lin, “A reconfigurable optofluidic Michelson interferometer using tunable droplet grating,” Lab Chip10(8), 1072–1078 (2010). [CrossRef] [PubMed]
  14. R. Bernini, G. Testa, L. Zeni, and P. M. Sarro, “Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides,” Appl. Phys. Lett.93(1), 011106 (2008). [CrossRef]
  15. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer,” Opt. Express16(22), 18164–18172 (2008). [CrossRef] [PubMed]
  16. G. Testa, Y. J. Huang, P. M. Sarro, L. Zeni, and R. Bernini, “High-visibility optofluidic Mach-Zehnder interferometer,” Opt. Lett.35(10), 1584–1586 (2010). [CrossRef] [PubMed]
  17. A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, S. W. F. M. van Hövell, T. A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, and J. S. Kanger, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Nano Lett.7(2), 394–397 (2007). [CrossRef] [PubMed]
  18. A. Ymeti, J. S. Kanger, J. Greve, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Realization of a multichannel integrated Young interferometer chemical sensor,” Appl. Opt.42(28), 5649–5660 (2003). [CrossRef] [PubMed]
  19. A. Brandenburg and R. Henninger, “Integrated optical Young interferometer,” Appl. Opt.33(25), 5941–5947 (1994). [CrossRef] [PubMed]
  20. A. Chryssis, S. Lee, S. Lee, S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett.17(6), 1253–1255 (2005). [CrossRef]
  21. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol.12(7), 757–764 (2001). [CrossRef]
  22. C. Monat, P. Domachuk, C. Grillet, M. Collins, B. J. Eggleton, M. Cronin-Golomb, S. Mutzenich, T. Mahmud, G. Rosengarten, and A. Mitchell, “Optofluidics: a novel generation of reconfigurable and adaptive compact architectures,” Microfluid. Nanofluid.4(1–2), 81–95 (2008). [CrossRef]
  23. Y. Xia and G. M. Whitesides, “Soft lithography,” Annu. Rev. Mater. Sci.28(1), 153–184 (1998). [CrossRef]
  24. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited