OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18937–18945

Design of curved photonic cavities for a narrow-band widely tunable resonance ranging 200 nm

Guanquan Liang, Aaron J. Danner, and Chengkuo Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 18937-18945 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a type of photonic resonator with a tunable curved cavity that enables efficient tuning of the optical length of a resonant cavity made of a solid material; we call this a “tunable curved resonator” (TCR). Its integration with a “tunable curved waveguide” (TCWG) and their actuation by a MEMS (micro electromechanical systems) electrostatic comb actuator are also designed for integrated photonic circuits. With this kind of structure, a widely and continuously tunable narrow-band resonance ranging up to 200 nm is achieved with a MEMS actuation voltage less than 70 V. Its applications in widely tunable photonic filters and lasers are promising.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators
(140.3948) Lasers and laser optics : Microcavity devices
(130.5296) Integrated optics : Photonic crystal waveguides
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

Original Manuscript: June 4, 2012
Revised Manuscript: July 25, 2012
Manuscript Accepted: July 27, 2012
Published: August 2, 2012

Guanquan Liang, Aaron J. Danner, and Chengkuo Lee, "Design of curved photonic cavities for a narrow-band widely tunable resonance ranging 200 nm," Opt. Express 20, 18937-18945 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University Press, 2008).
  2. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003). [CrossRef] [PubMed]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop tunneling through localized states,” Phys. Rev. Lett.80(5), 960–963 (1998). [CrossRef]
  4. M. Belotti, M. Galli, D. Gerace, L. C. Andreani, G. Guizzetti, A. R. Md Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “All-optical switching in silicon-on-insulator photonic wire nano-cavities,” Opt. Express18(2), 1450–1461 (2010). [CrossRef] [PubMed]
  5. D. Sridharan, R. Bose, H. Kim, G. S. Solomon, and E. Waks, “A reversibly tunable photonic crystal nanocavity laser using photochromic thin film,” Opt. Express19(6), 5551–5558 (2011). [CrossRef] [PubMed]
  6. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010). [CrossRef] [PubMed]
  7. R. Perahia, J. D. Cohen, S. Meenehan, T. P. M. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010). [CrossRef]
  8. X. Chew, G. Zhou, H. Yu, F. S. Chau, J. Deng, Y. C. Loke, and X. Tang, “An in-plane nano-mechanics approach to achieve reversible resonance control of photonic crystal nanocavities,” Opt. Express18(21), 22232–22244 (2010). [CrossRef] [PubMed]
  9. G. Liang, C. Lee, and A. J. Danner, “Design of narrow band photonic filter with compact MEMS for tunable resonant wavelength ranging 100 nm,” AIP Advances1(4), 042171 (2011). [CrossRef]
  10. P. R. Villeneuve, J. S. Foresi, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997). [CrossRef]
  11. M. Y. Liu and S. Y. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett.68(2), 170–172 (1996). [CrossRef]
  12. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express15(6), 3140–3148 (2007). [CrossRef] [PubMed]
  13. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  14. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  15. Y. Zhang, M. W. McCutcheon, I. B. Burgess, and M. Loncar, “Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities,” Opt. Lett.34(17), 2694–2696 (2009). [CrossRef] [PubMed]
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004). [CrossRef] [PubMed]
  17. C. O. M. S. O. L. Multiphysics, http://www.comsol.com .
  18. M. E. E. P. Tutorial, http://ab-initio.mit.edu/wiki/index.php/Meep .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited