OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 18955–18966

Auto-focusing and self-healing of Pearcey beams

James D. Ring, Jari Lindberg, Areti Mourka, Michael Mazilu, Kishan Dholakia, and Mark R. Dennis  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 18955-18966 (2012)
http://dx.doi.org/10.1364/OE.20.018955


View Full Text Article

Enhanced HTML    Acrobat PDF (4890 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new solution of the paraxial equation based on the Pearcey function, which is related to the Airy function and describes diffraction about a cusp caustic. The Pearcey beam displays properties similar not only to Airy beams but also Gaussian and Bessel beams. These properties include an inherent auto-focusing effect, as well as form-invariance on propagation and self-healing. We describe the theory of propagating Pearcey beams and present experimental verification of their auto-focusing and self-healing behaviour.

© 2012 OSA

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(140.3300) Lasers and laser optics : Laser beam shaping
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: June 8, 2012
Revised Manuscript: July 23, 2012
Manuscript Accepted: July 23, 2012
Published: August 2, 2012

Citation
James D. Ring, Jari Lindberg, Areti Mourka, Michael Mazilu, Kishan Dholakia, and Mark R. Dennis, "Auto-focusing and self-healing of Pearcey beams," Opt. Express 20, 18955-18966 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-18955


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A4, 651–654 (1987). [CrossRef]
  3. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett.58, 1499–1501 (1987). [CrossRef] [PubMed]
  4. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys.47, 264–267 (1979). [CrossRef]
  5. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett.32, 979–981 (2007). [CrossRef] [PubMed]
  6. M. A. Bandres and J. C. Gutiérres-Vega, “Ince-Gaussian beams,” Opt. Lett.29, 144–146 (2004). [CrossRef] [PubMed]
  7. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett.25, 1493–1495 (2000). [CrossRef]
  8. M. A. Bandres, “Accelerating parabolic beams,” Opt. Lett.33, 1678–1680 (2008). [CrossRef] [PubMed]
  9. M. V. Berry and C. J. Howls, “Integrals with coalescing saddles,” http://dlmf.nist.gov/36.2 (Digital Library of Mathematical Functions, National Institute of Standards and Technology, 2012).
  10. T. Poston and I. Stewart, Catastrophe Theory and its Applications (Dover Publications Inc., 1997).
  11. M. V. Berry and C. Upstill, “Catastrophe optics: morphologies of caustics and their diffraction patterns,” Prog. Opt.18, 257–346 (1980). [CrossRef]
  12. G. A. Deschamps, “Gaussian beam as a bundle of complex rays,” Electron. Lett.7, 684–685 (1971). [CrossRef]
  13. M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, “Light beats the spread: non-diffracting beams,” Laser Photon. Rev.4, 529–547 (2010). [CrossRef]
  14. F. O. Fahrbach, P. Simon, and A. Rohrbach, “Microscopy with self-reconstructing beams,” Nat. Photon.4, 780–785 (2010). [CrossRef]
  15. Z. Bouchal, J. Wagner, and M. Chlup, “Self-reconstruction of a distorted nondiffracting beam,” Opt. Commun.151, 207–211 (1998). [CrossRef]
  16. S. Vyas, Y. Kozawa, and S. Sato, “Self-healing of tightly focused scalar and vector Bessel-Gauss beams at the focal plane,” J. Opt. Soc. Am. A5, 837–843 (2011). [CrossRef]
  17. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature419, 145–147 (2002). [CrossRef] [PubMed]
  18. P. Vaity and R. P. Singh, “Self-healing property of optical ring lattice,” Opt. Lett.36, 2994–2996 (2011). [CrossRef] [PubMed]
  19. F. Gori, G. Guattari, and C. Padovani, “Bessel-Gauss beams,” Opt. Commun.64, 491–495 (1987). [CrossRef]
  20. J. E. Morris, M. Mazilu, J. Baumgartl, T. Cizmar, and K. Dholakia, “Propagation characteristics of Airy beams: dependence upon spatial coherence and wavelength,” Opt. Express17, 13236–13245 (2009). [CrossRef] [PubMed]
  21. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express16, 12880–12891 (2008). [CrossRef] [PubMed]
  22. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon.2, 675–678 (2008). [CrossRef]
  23. M. V. Berry and C. J. Howls, “Infinity interpreted,” Phys. World6, 35–39 (1993).
  24. J. F. Nye, Natural Focusing and Fine Structure of Light (IoP Publishing, 1999).
  25. E. Greenfield, M. Segev, W. Walasik, and O. Raz, “Accelerating light beams along arbitrary convex trajectories,” Phys. Rev. Lett.106, 213902 (2011). [CrossRef] [PubMed]
  26. T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic,” Phil. Mag. S. 7 37, 311–317 (1946).
  27. M. V. Berry, J. F. Nye, and F. J. Wright, “The elliptic umbilic diffraction catastrophe,” Phil. Trans. R. Soc. A291, 453–484 (1979). [CrossRef]
  28. J. J. Stamnes, Waves in Focal Regions (Taylor & Francis, 1986).
  29. M. A. Bandres and M. Guizar-Sicairos, “Paraxial group,” Opt. Lett.34, 13–15 (2009). [CrossRef]
  30. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications Inc., 1965).
  31. M. V. Berry, “Faster than Fourier,” in Quantum Coherence and Reality, J. S. Anandan and J. L. Safko, eds. (World Scientific, 1992), 55–65.
  32. M. R. Dennis and J. Lindberg “Natural superoscillation of random functions in one and more dimensions,” Proc. SPIE7394, article 73940A (2009). [CrossRef]
  33. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M R Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nature Mat.11, 432–435 (2012). [CrossRef]
  34. J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phy. Lett.98, 181109 (2011). [CrossRef]
  35. M. Anguiano-Morales, A. Martínez, M. D. Iturbe-Castillo, S. Chávez-Cerda, and N. Alcalá-Ochoa, “Self-healing property of a caustic optical beam,” Appl. Opt.46, 8284–8290 (2007). [CrossRef] [PubMed]
  36. N. K. Efremidis and D. N. Christodoulides, “Abruptly autofocusing waves,” Opt. Lett.35, 4045–4047 (2010). [CrossRef] [PubMed]
  37. D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and S. Tzortzakis, “Observation of abruptly autofocusing waves,” Opt. Lett.36, 1842–1844 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited