OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19016–19029

Wideband optical sensing using pulse interferometry

Amir Rosenthal, Daniel Razansky, and Vasilis Ntziachristos  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19016-19029 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1415 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Advances in fabrication of high-finesse optical resonators hold promise for the development of miniaturized, ultra-sensitive, wide-band optical sensors, based on resonance-shift detection. Many potential applications are foreseen for such sensors, among them highly sensitive detection in ultrasound and optoacoustic imaging. Traditionally, sensor interrogation is performed by tuning a narrow linewidth laser to the resonance wavelength. Despite the ubiquity of this method, its use has been mostly limited to lab conditions due to its vulnerability to environmental factors and the difficulty of multiplexing – a key factor in imaging applications. In this paper, we develop a new optical-resonator interrogation scheme based on wideband pulse interferometry, potentially capable of achieving high stability against environmental conditions without compromising sensitivity. Additionally, the method can enable multiplexing several sensors. The unique properties of the pulse-interferometry interrogation approach are studied theoretically and experimentally. Methods for noise reduction in the proposed scheme are presented and experimentally demonstrated, while the overall performance is validated for broadband optical detection of ultrasonic fields. The achieved sensitivity is equivalent to the theoretical limit of a 6 MHz narrow-line width laser, which is 40 times higher than what can be usually achieved by incoherent interferometry for the same optical resonator.

© 2012 OSA

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(320.5550) Ultrafast optics : Pulses
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:

Original Manuscript: April 18, 2012
Revised Manuscript: June 25, 2012
Manuscript Accepted: June 27, 2012
Published: August 3, 2012

Amir Rosenthal, Daniel Razansky, and Vasilis Ntziachristos, "Wideband optical sensing using pulse interferometry," Opt. Express 20, 19016-19029 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Michelson and E. W. Morley, “On the relative motion of the earth and the luminiferous ether,” Am. J. Sci.34, 333–345 (1887).
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensor,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  3. J. A. Bucaro, H. D. Dardy, and E. F. Carome, “Fiber-optic hydrophone,” J. Acoust. Soc. Am.62(5), 1302–1304 (1977). [CrossRef]
  4. T. T. Y. Lam, G. Gagliardi, M. Salza, J. H. Chow, and P. De Natale, “Optical fiber three-axis accelerometer based on lasers locked to π phase-shifted Bragg gratings,” Meas. Sci. Technol.21(9), 094010 (2010). [CrossRef]
  5. C. Fabry and A. Pérot, “On the fringes of thin silver plates and their application to the measurement of small layers of air,” Ann. Chim. Phys.12, 459–501 (1897).
  6. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  7. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol.15(6), 998–1005 (1997). [CrossRef]
  8. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection fiber fabrication,” Appl. Phys. Lett.32(10), 647–649 (1978). [CrossRef]
  9. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  10. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett.36(10), 1833–1835 (2011). [CrossRef] [PubMed]
  11. D. Gallego and H. Lamela, “High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications,” Opt. Lett.34(12), 1807–1809 (2009). [CrossRef] [PubMed]
  12. P. Morris, A. Hurrell, A. Shaw, E. Zhang, and P. Beard, “A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure,” J. Acoust. Soc. Am.125(6), 3611–3622 (2009). [CrossRef] [PubMed]
  13. E. Zhang, J. Laufer, and P. Beard, “Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues,” Appl. Opt.47(4), 561–577 (2008). [CrossRef] [PubMed]
  14. S. W. Huang, S. L. Chen, T. Ling, A. Maxwell, M. O’Donnell, L. J. Guo, and S. Ashkenazi, “Low-noise wideband ultrasound detection using polymer microring resonators,” Appl. Phys. Lett.92(19), 193509 (2008). [CrossRef] [PubMed]
  15. T. Ling, S. L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express19(2), 861–869 (2011). [CrossRef] [PubMed]
  16. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Going deeper than microscopy with multi-spectral optoacoustic tomography of fluorescent proteins in-vivo,” Nat. Photonics3, 412–417 (2009). [CrossRef]
  17. V. Ntziachristos and D. Razansky, “Molecular imaging by means of multispectral optoacoustic tomography (MSOT),” Chem. Rev.110(5), 2783–2794 (2010). [CrossRef] [PubMed]
  18. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011). [CrossRef] [PubMed]
  19. D. Razansky, S. Kellnberger, and V. Ntziachristos, “Near-field radiofrequency thermoacoustic tomography with impulse excitation,” Med. Phys.37(9), 4602–4607 (2010). [CrossRef] [PubMed]
  20. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings,” Opt. Lett.23(24), 1930–1932 (1998). [CrossRef] [PubMed]
  21. J. H. Chow, I. C. M. Littler, D. E. Glenn de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol.23(5), 1881–1889 (2005). [CrossRef]
  22. J. H. Chow, I. C. Littler, D. E. McClelland, and M. B. Gray, “Laser frequency-noise-limited ultrahigh resolution remote fiber sensing,” Opt. Express14(11), 4617–4624 (2006). [CrossRef] [PubMed]
  23. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. M. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett.30(15), 1923–1925 (2005). [CrossRef] [PubMed]
  24. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science330(6007), 1081–1084 (2010). [CrossRef] [PubMed]
  25. T. T. Y. Lam, J. H. Chow, D. A. Shaddock, I. C. M. Littler, G. Gagliardi, M. B. Gray, and D. E. McClelland, “High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing,” Appl. Opt.49(21), 4029–4033 (2010). [CrossRef] [PubMed]
  26. S. Avino, J. A. Barnes, G. Gagliardi, X. Gu, D. Gutstein, J. R. Mester, C. Nicholaou, and H. P. Loock, “Musical instrument pickup based on a laser locked to an optical fiber resonator,” Opt. Express19(25), 25057–25065 (2011). [CrossRef] [PubMed]
  27. C. K. Kirkendall and A. Dandridge, “Overview of high performance fiber-optic sensing,” J. Phys. D Appl. Phys.37(18), R197–R216 (2004). [CrossRef]
  28. G. A. Cranch, P. J. Nash, and C. K. Kirkendall, “Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications,” IEEE Sens. J.3(1), 19–30 (2003). [CrossRef]
  29. I. C. M. Littler, M. B. Gray, J. H. Chow, D. A. Shaddock, and D. E. McClelland, “Pico-strain multiplexed fiber optic sensor array operating down to infra-sonic frequencies,” Opt. Express17(13), 11077–11087 (2009). [CrossRef] [PubMed]
  30. M. A. Yaseen, S. A. Ermilov, H. P. Brecht, R. Su, A. Conjusteau, M. Fronheiser, B. A. Bell, M. Motamedi, and A. A. Oraevsky, “Optoacoustic imaging of the prostate: development toward image-guided biopsy,” J. Biomed. Opt.15(2), 021310 (2010). [CrossRef] [PubMed]
  31. A. D. Kersey, D. A. Jackson, and M. Corke, “Passive compensation scheme suitable for use in the single-mode fiber interferometer,” Electron. Lett.18(9), 392–393 (1982). [CrossRef]
  32. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  33. A. T. Alavie, S. E. Karr, A. Othonos, and R. M. Measures, “A multiplexed Bragg grating fiber laser sensor system,” IEEE Photon. Technol. Lett.5(9), 1112–1114 (1993). [CrossRef]
  34. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, “Distributed feedback fiber laser strain sensor,” IEEE Sens. J.8(7), 1161–1172 (2008). [CrossRef]
  35. K. P. Koo and A. D. Kersey, “Fiber laser sensor with ultrahigh strain resolution using interferometric interrogation,” Electron. Lett.31(14), 1180–1182 (1995). [CrossRef]
  36. L. Y. Shao, S. T. Lau, X. Dong, A. P. Zhang, H. L. W. Chan, H. Y. Tam, and S. He, “High-frequency ultrasonic hydrophone based on a cladding-etched DBR fiber laser,” IEEE Photon. Technol. Lett.20(8), 548–550 (2008). [CrossRef]
  37. C. C. Ye and R. P. Tatam, “Ultrasonic sensing using Yb3+/Er3+-codoped distributed feedback fiber grating lasers,” Smart Mater. Struct.14(1), 170–176 (2005). [CrossRef]
  38. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol.4(11), 1704–1710 (1986). [CrossRef]
  39. G. Di Domenico, S. Schilt, and P. Thomann, “Simple approach to the relation between laser frequency noise and laser line shape,” Appl. Opt.49(25), 4801–4807 (2010). [CrossRef] [PubMed]
  40. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express16(3), 1945–1950 (2008). [CrossRef] [PubMed]
  41. D. A. Jackson, R. Priest, A. Dandridge, and A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt.19(17), 2926–2929 (1980). [CrossRef] [PubMed]
  42. R. S. Weis and B. L. Bachim, “Source-noise-induced resolution limits of interferometric fiber Bragg grating sensor demodulation systems,” Meas. Sci. Technol.12(7), 782–785 (2001). [CrossRef]
  43. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol.15(8), 1277–1294 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited