OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19039–19049

Slowing light down by low magnetic fields: pulse delay by transient spectral hole-burning in ruby

Hans Riesen, Aleksander K. Rebane, Alex Szabo, and Ivana Carceller  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19039-19049 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the observation of slow light induced by transient spectral hole-burning in a solid, that is based on excited-state population storage. Experiments were conducted in the R1-line (2E←4A2 transition) of a 2.3 mm thick pink ruby (Al2O3:Cr(III) 130 ppm). Importantly, the pulse delay can be controlled by the application of a low external magnetic field B||c≤9 mT and delays of up to 11 ns with minimal pulse distortion are observed for ~55 ns Gaussian pulses. The delay corresponds to a group velocity value of ~c/1400. The experiment is very well modelled by linear spectral filter theory and the results indicate the possibility of using transient hole-burning based slow light experiments as a spectroscopic technique.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.1670) Quantum optics : Coherent optical effects
(300.0300) Spectroscopy : Spectroscopy
(300.6240) Spectroscopy : Spectroscopy, coherent transient
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6320) Spectroscopy : Spectroscopy, high-resolution

ToC Category:
Slow and Fast Light

Original Manuscript: June 15, 2012
Revised Manuscript: July 30, 2012
Manuscript Accepted: August 1, 2012
Published: August 3, 2012

Hans Riesen, Aleksander K. Rebane, Alex Szabo, and Ivana Carceller, "Slowing light down by low magnetic fields: pulse delay by transient spectral hole-burning in ruby," Opt. Express 20, 19039-19049 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Krauss, “Why do we need slow light?” Nat. Photonics2(8), 448–450 (2008). [CrossRef]
  2. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics,” J. Opt. Soc. Am. B28(12), A38–A44 (2011). [CrossRef]
  3. R. W. Boyd, “Slow and fast light: fundamentals and applications,” J. Mod. Opt.56(18-19), 1908–1915 (2009). [CrossRef]
  4. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photon.2(3), 287 (2010). [CrossRef]
  5. R. Boyd, “Slow Light, Fast Light, and their Applications,” in CLEO:2011 - Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThR1.)
  6. J. B. Khurgin and R. S. Tucker, eds., Slow Light: Science and Applications (CRC Press, 2008).
  7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  8. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett.88(2), 023602 (2001). [CrossRef] [PubMed]
  9. J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, “Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid,” Phys. Rev. Lett.95(6), 063601 (2005). [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett.90(11), 113903 (2003). [CrossRef] [PubMed]
  11. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V. Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett.95(14), 143601 (2005). [CrossRef] [PubMed]
  12. V. S. Zapasskiĭ and G. G. Kozlov, “On two models of light pulse delay in saturable absorber,” Opt. Spectrosc.109(3), 407–412 (2010). [CrossRef]
  13. A. C. Selden, “Practical tests for distinguishing slow light from saturable absorption,” Opt. Express18(12), 13204–13211 (2010). [CrossRef] [PubMed]
  14. R. Lauro, T. Chaneliere, and J. L. Le Gouet, “Slow light using spectral hole burning in a Tm3+-doped yttrium-aluminum-garnet crystal,” Phys. Rev. A79(6), 063844 (2009). [CrossRef]
  15. R. M. Camacho, M. V. Pack, and J. C. Howell, “Slow light with large fractional delays by spectral hole-burning in rubidium vapor,” Phys. Rev. A74(3), 033801 (2006). [CrossRef]
  16. G. S. Agarwal and T. N. Dey, “Non-electromagnetically induced transparency mechanisms for slow light,” Laser Photonics Rev.3(3), 287–300 (2009). [CrossRef]
  17. J. Hahn and B. S. Ham, “Observations of self-induced ultraslow light in a persistent spectral hole burning medium,” Opt. Express16(21), 16723–16728 (2008). [CrossRef] [PubMed]
  18. B. S. Ham and J. Hahn, “Transmission enhancement of ultraslow light in an atom shelved model of spectral hole burning solids,” Opt. Express17(11), 9369–9375 (2009). [CrossRef] [PubMed]
  19. R. N. Shakhmuratov, A. Rebane, P. Megret, and J. Odeurs, “Slow light with persistent hole burning,” Phys. Rev. A71(5), 053811 (2005). [CrossRef]
  20. A. Rebane, R. N. Shakhmuratov, P. Megret, and J. Odeurs, “‘Slow light with persistent spectral hole burning in waveguides,” J. Lumin.127(1), 22–27 (2007). [CrossRef]
  21. G. S. Agarwal and T. N. Dey, “Slow light in Doppler-broadened two-level systems,” Phys. Rev. A68(6), 063816 (2003). [CrossRef]
  22. W. E. Moerner, “Introduction,” in Persistent Spectral Hole Burning: Science and Applications, W. E. Moerner, ed. (Springer, 1988), Topics In Current Physics 44, pp. 1–15.
  23. H. Riesen and A. Szabo, “Revisiting the temperature dependence of the homogeneous R1 linewidth in ruby,” Chem. Phys. Lett.484(4-6), 181–184 (2010). [CrossRef]
  24. H. Riesen, B. F. Hayward, and A. Szabo, “‘Side-hole to anti-hole conversion in time-resolved spectral hole burning of ruby: Long-lived spectral holes due to ground state level population storage,” J. Lumin.127(2), 655–664 (2007). [CrossRef]
  25. A. Szabo, “‘Sideband detection of optical hole burning in ruby,” IEEE J. Quantum Electron.10(9), 747–748 (1974). [CrossRef]
  26. A. Szabo and R. Kaarli, “Optical hole burning and spectral diffusion in ruby,” Phys. Rev. B Condens. Matter44(22), 12307–12313 (1991). [CrossRef] [PubMed]
  27. A. Szabo, “Ultra-narrow optical hole-burning in ruby,” J. Lumin.56(1-6), 47–50 (1993). [CrossRef]
  28. N. Kurnit, I. Abella, and S. Hartmann, “Observation of a photon echo,” Phys. Rev. Lett.13(19), 567–568 (1964). [CrossRef]
  29. A. Szabo, “Frozen core effects on nonexponential photon-echo decay in ruby at high fields,” J. Lumin.58(1-6), 403–405 (1994). [CrossRef]
  30. S. H. Huang and A. Szabo, “Numerical studies of optical dephasing in ruby,” J. Lumin.68(6), 291–297 (1996). [CrossRef]
  31. H. M. Nussenzveig, Causality and Dispersion Relations (Academic Press, 1972).
  32. P. E. Jessop and A. Szabo, “High-resolution measurements of the ruby R1 line at low-temperatures,” Opt. Commun.33(3), 301–302 (1980). [CrossRef]
  33. P. E. Jessop and A. Szabo, “Visual observations of macroscopic inhomogeneous broadening of the R1 line in ruby,” Appl. Phys. Lett.37(6), 510–512 (1980). [CrossRef]
  34. M. L. Lewis and H. Riesen, “Transient and persistent spectral hole-burning in the R-lines of chromium(III) in NaMgAl(oxalate)3·9H2O,” J. Phys. Chem. A106(35), 8039–8045 (2002). [CrossRef]
  35. P. E. Jessop and A. Szabo, “Optical hole-burning and ground state energy transfer in ruby” in Laser Spectroscopy V, A. McKellar, T. Oka and B.P. Stoicheff, eds. (Springer-Verlag, 1981) pp. 408–411.
  36. H. Riesen and A. Szabo, “Probing hyperfine interactions in 53Cr(III) doped Al2O3 by spectral hole-burning in low magnetic fields,” Phys. Procedia3(4), 1577–1582 (2010). [CrossRef]
  37. A. Renn, U. P. Wild, and A. Rebane, “Multidimensional holography by persistent spectral hole burning,” J. Phys. Chem. A106(13), 3045–3060 (2002). [CrossRef]
  38. A. Rebane, R. Kaarli, P. Saari, A. Anijalg, and K. Timpmann, “Photochemical time-domain holography of weak picosecond pulses,” Opt. Commun.47(3), 173–176 (1983). [CrossRef]
  39. J. H. Eberly, S. R. Hartmann, and A. Szabo, “Propagation narrowing in the transmission of a light-pulse through a spectral hole,” Phys. Rev. A23(5), 2502–2506 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited