OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19050–19059

High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination

Dennis F. Gardner, Bosheng Zhang, Matthew D. Seaberg, Leigh S. Martin, Daniel E. Adams, Farhad Salmassi, Eric Gullikson, Henry Kapteyn, and Margaret Murnane  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19050-19059 (2012)
http://dx.doi.org/10.1364/OE.20.019050


View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We extend coherent diffraction imaging (CDI) to a high numerical aperture reflection mode geometry for the first time. We derive a coordinate transform that allows us to rewrite the recorded far-field scatter pattern from a tilted object as a uniformly spaced Fourier transform. Using this approach, FFTs in standard iterative phase retrieval algorithms can be used to significantly speed up the image reconstruction times. Moreover, we avoid the isolated sample requirement by imaging a pinhole onto the specimen, in a technique termed apertured illumination CDI. By combining the new coordinate transformation with apertured illumination CDI, we demonstrate rapid high numerical aperture imaging of samples illuminated by visible laser light. Finally, we demonstrate future promise for this technique by using high harmonic beams for high numerical aperture reflection mode imaging.

© 2012 OSA

OCIS Codes
(100.5070) Image processing : Phase retrieval
(190.2620) Nonlinear optics : Harmonic generation and mixing
(340.7460) X-ray optics : X-ray microscopy
(340.7480) X-ray optics : X-rays, soft x-rays, extreme ultraviolet (EUV)

ToC Category:
Image Processing

History
Original Manuscript: June 21, 2012
Revised Manuscript: July 22, 2012
Manuscript Accepted: July 23, 2012
Published: August 3, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Dennis F. Gardner, Bosheng Zhang, Matthew D. Seaberg, Leigh S. Martin, Daniel E. Adams, Farhad Salmassi, Eric Gullikson, Henry Kapteyn, and Margaret Murnane, "High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination," Opt. Express 20, 19050-19059 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19050


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Miao, P. Charalambous, and J. Kirz, “Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens,” Nature400, 342–344 (1999). [CrossRef]
  2. H. N. Chapman and K. A. Nugent, “Coherent lensless X-ray imaging,” Nat. Photonics4, 833–839 (2010). [CrossRef]
  3. P. Thibault and E. Veit, “X-Ray Diffraction Microscopy,” Annu. Rev. Condens. Matter Phys.1, 237–255 (2010). [CrossRef]
  4. K. S. Raines, S. Salha, R. L. Sandberg, H. Jiang, J. A. Rodríguez, B. P. Fahimian, H. C. Kapteyn, J. Du, and J. Miao, “Three-dimensional structure determination from a single view,” Nature463, 214–217 (2010). [CrossRef]
  5. A. M. Maiden, J. M. Rodenburg, and M. J. Humphry, “Optical ptychography: a practical implementation with useful resolution,” Opt. Lett.35, 2585–2587 (2010). [CrossRef] [PubMed]
  6. B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer, M. de Jonge, and I. McNulty, “Keyhole coherent diffractive imaging,” Nat. Phys.4, 394–398 (2008). [CrossRef]
  7. J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett.3, 27–29 (1978). [CrossRef] [PubMed]
  8. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.21, 2758–2769 (1982). [CrossRef] [PubMed]
  9. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A20, 40–55 (2003). [CrossRef]
  10. V. Elser, “Random projections and the optimization of an algorithm for phase retrieval,” J. Phys. A: Math. Gen.36, 2995–3007 (2003). [CrossRef]
  11. S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R. Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction from a diffraction pattern alone,” Phys. Rev. B68, 140101 (2003). [CrossRef]
  12. D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse Probl.21, 37–50 (2005). [CrossRef]
  13. J. Miao and D. Sayre, “On possible extensions of X-ray crystallography through diffraction-pattern oversampling,” Acta. Crystallogr. A56, 596–605 (2000). [CrossRef] [PubMed]
  14. P. Fischer, “Studying nanoscale magnetism and its dynamics with soft X-ray microscopy,” IEEE Trans. Magn.44, 1900–1904 (2008). [CrossRef]
  15. A. Tripathi, J. Mohanty, S. H. Dietze, O. G. Shpyrko, E. Shipton, E. E. Fullerton, S. S. Kim, and I. McNulty, “Dichroic coherent diffractive imaging,” Proc. Natl. Acad. Sci. U.S.A.108, 13393–13398 (2011). [CrossRef] [PubMed]
  16. I. Robinson and R. Harder, “Coherent X-ray diffraction imaging of strain at the nanoscale,” Nat. Matter.8, 291–298 (2009). [CrossRef]
  17. B. Abbey, G. J. Williams, M. A. Pfeifer, J. N. Clark, C. T. Putkunz, A. Torrance, I. McNulty, T. M. Levin, A. G. Peele, and K. A. Nugent, “Quantitative coherent diffractive imaging of an integrated circuit at a spatial resolution of 20 nm,” Appl. Phys. Lett.93, 214101 (2008). [CrossRef]
  18. J. Miao, T. Ishikawa, Q. Shen, and T. Earnest, “Extending X-ray crystallography to allow the imaging of non-crystalline materials, cells, and single protein complexes,” Annu. Rev. Phys. Chem.59, 387–410 (2008). [CrossRef]
  19. J. Nelson, X. Huang, J. Steinbrener, D. Shapiro, J. Kirz, S. Marchesini, A. M. Neiman, J. J. Turner, and C. Jacobsen, “High-resolution x-ray diffraction microscopy of specifically labeled yeast cells,” Proc. Natl. Acad. Sci. U.S.A.107, 7235–7239 (2010). [CrossRef] [PubMed]
  20. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane, and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics4, 822–832 (2010). [CrossRef]
  21. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. Murnane, and H. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett.105, 173901 (2010). [CrossRef]
  22. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV x-ray regime from mid-infrared femtosecond lasers,” Science336, 1287–1291 (2012). [CrossRef] [PubMed]
  23. C. Durfee, A. Rundquist, S. Backus, C. Herne, M. Murnane, and H. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett.83, 2187–2190 (1999). [CrossRef]
  24. X. Zhang, A. R. Libertun, A. Paul, E. Gagnon, S. Backus, I. P. Christov, M. M. Murnane, H. C. Kapteyn, R. A. Bartels, Y. Liu, and D. T. Attwood, “Highly coherent light at 13 nm generated by use of quasi-phase-matched high-harmonic generation,” Opt. Lett.29, 1357–1399 (2004). [CrossRef] [PubMed]
  25. W. Ackermann and , “Operation of a free-electron laser from the extreme ultraviolet to the water window,” Nat. Photonics1, 336–342 (2007). [CrossRef]
  26. S. J. Habib, O. Guilbaud, B. Zielbauer, D. Zimmer, M. Pittman, D. R. Kazamias, C. Montet, and T. Kuehl, “Low energy prepulse for 10 Hz operation of a soft-x-ray laser,” Opt. Express20, 10128–10137 (2012). [CrossRef] [PubMed]
  27. D. Alessi, Y. Wang, B. Luther, L. Yin, D. Martz, M. Woolston, Y. Liu, M. Berrill, and J. Rocca, “Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm,” Phys. Rev. X1, 021023 (2011). [CrossRef]
  28. M. D. Seaberg, D. E. Adams, E. L. Townsend, D. A. Raymondson, W. F. Schlotter, Y. Liu, C. S. Menoni, L. Rong, C.-C. Chen, J. Miao, H. C. Kapteyn, and M. M. Murnane, “Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source,” Opt. Express19, 22470–22479 (2011). [CrossRef] [PubMed]
  29. S. Roy, D. Parks, K. A. Seu, R. Su, J. J. Turner, W. Chao, E. H. Anderson, S. Cabrini, and S. D. Kevan, “Lensless x-ray imaging in reflection geometry,” Nat. Photonics5, 243–245 (2011). [CrossRef]
  30. S. Marathe, S. Kim, S. Kim, C. Kim, H. C. Kang, P. V. Nickles, and D. Y. Noh, “Coherent diffraction surface imaging in reflection geometry,” Opt. Express18, 7253–7262 (2010). [CrossRef] [PubMed]
  31. T. Harada, M. Nakasuji, T. Kimura, T. Watanabe, H. Kinoshita, and Y. Nagata, “Imaging of extreme-ultraviolet mask patterns using coherent extreme-ultraviolet scatterometry microscope based on coherent diffraction imaging,” J. Vac. Sci. Technol. B29, 06F503 (2011). [CrossRef]
  32. M. Bryan, P. Fry, T. Schrefl, M. R. Gibbs, D. A. Allwood, M.-Y. Im, and P. Fischer, “Transverse field-induced nucleation pad switching modes during domain wall injection,” IEEE Trans. Magn.46, 963–967 (2010). [CrossRef]
  33. J. M. Cowley, Diffraction Physics, 3rd ed. (Elsevier Science B.V., Danvers, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited