OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19060–19066

Deep subwavelength confinement and giant enhancement of light field by a plasmonic lens integrated with a metal-insulator-metal vertical nanocavity

Song Yue, Zhi Li, Jianjun Chen, and Qihuang Gong  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19060-19066 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A metal-insulator-metal vertical nanocavity is proposed to be integrated at the center of a plasmonic lens. Utilizing cavity resonance effect, the light intensity at the center of the integrated plasmonic lens gets enhancement up to 5500 times compared to that without the cavity, and the light field is tightly confined into a spot as small as 6.0 × 10−3λ02. The Purcell factor of the cavity reaches up to 1400, ensuring greatly enhanced light-matter interaction inside the cavity. Moreover, the proposed structure takes advantage of linearly polarized light excitation and easy fabrication.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(140.3945) Lasers and laser optics : Microcavities
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: June 22, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 20, 2012
Published: August 3, 2012

Song Yue, Zhi Li, Jianjun Chen, and Qihuang Gong, "Deep subwavelength confinement and giant enhancement of light field by a plasmonic lens integrated with a metal-insulator-metal vertical nanocavity," Opt. Express 20, 19060-19066 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  3. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  4. B. A. Liu, D. X. Wang, C. Shi, K. B. Crozier, and T. Yang, “Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation,” Opt. Express19(11), 10049–10056 (2011). [CrossRef] [PubMed]
  5. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010). [CrossRef] [PubMed]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009). [CrossRef]
  7. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature459(7245), 410–413 (2009). [CrossRef] [PubMed]
  8. Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett.5(9), 1726–1729 (2005). [CrossRef] [PubMed]
  9. Z. Y. Fang, Q. Peng, W. T. Song, F. H. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett.11(2), 893–897 (2011). [CrossRef] [PubMed]
  10. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett.10(2), 529–536 (2010). [CrossRef] [PubMed]
  11. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010). [CrossRef] [PubMed]
  12. G. H. Rui, W. B. Chen, Y. H. Lu, P. Wang, H. Ming, and Q. W. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt.12(3), 035004 (2010). [CrossRef]
  13. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett.11(1), 220–224 (2011). [CrossRef] [PubMed]
  14. Y. X. Cui and S. L. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett.34(1), 16–18 (2009). [CrossRef] [PubMed]
  15. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003).
  16. G. Veronis and S. H. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005). [CrossRef] [PubMed]
  17. J. M. Steele, Z. W. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express14(12), 5664–5670 (2006). [CrossRef] [PubMed]
  18. X. L. Zhu, Y. Zhang, J. S. Zhang, J. Xu, Y. Ma, Z. Y. Li, and D. P. Yu, “Ultrafine and smooth full metal nanostructures for plasmonics,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4345–4349 (2010). [CrossRef] [PubMed]
  19. X. L. Zhu, J. S. Zhang, J. Xu, and D. P. Yu, “Vertical plasmonic resonant nanocavities,” Nano Lett.11(3), 1117–1121 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited