OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19075–19087

Dual-channel, single-photon upconversion detector at 1.3 μm

J. S. Pelc, Paulina S. Kuo, Oliver Slattery, Lijun Ma, Xiao Tang, and M. M. Fejer  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19075-19087 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a two-channel, upconversion detector for counting 1300-nm-wavelength photons. By using two pumps near 1550 nm, photons near 1300 nm are converted to two spectrally distinct channels near 710 nm using sum-frequency generation (SFG) in a periodically poled LiNbO3 (PPLN) waveguide. We used spectral-conversion engineering to design the phase-modulated PPLN waveguide for simultaneous quasi-phasematching of two SFG processes. The two channels exhibit 31% and 25% full-system photon detection efficiency, and very low dark count rates (650 and 550 counts per second at a peak external conversion efficiency of 70%) through filtering using a volume Bragg grating. We investigate applications of the dual-channel upconversion detector as a frequency-shifting beamsplitter, and as a time-to-frequency converter to enable higher-data-rate quantum communications.

© 2012 OSA

OCIS Codes
(040.5570) Detectors : Quantum detectors
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.5565) Quantum optics : Quantum communications

ToC Category:

Original Manuscript: July 2, 2012
Revised Manuscript: July 26, 2012
Manuscript Accepted: July 27, 2012
Published: August 3, 2012

J. S. Pelc, Paulina S. Kuo, Oliver Slattery, Lijun Ma, Xiao Tang, and M. M. Fejer, "Dual-channel, single-photon upconversion detector at 1.3 μm," Opt. Express 20, 19075-19087 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt.51(9–10), 1433–1445 (2004).
  2. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 microm by means of frequency upconversion,” Opt. Lett.29(13), 1449–1451 (2004). [CrossRef] [PubMed]
  3. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett.30(13), 1725–1727 (2005). [CrossRef] [PubMed]
  4. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector(1),” Opt. Express17(16), 14395–14404 (2009). [CrossRef] [PubMed]
  5. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19(22), 21445–21456 (2011). [CrossRef] [PubMed]
  6. R. H. Hadfield, “Single-photon detectors for optical quantum information applications,” Nat. Photonics3(12), 696–705 (2009). [CrossRef]
  7. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited Review Article: Single-photon sources and detectors,” Rev. Sci. Instrum.82(7), 071101 (2011). [CrossRef] [PubMed]
  8. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16(5), 3032–3040 (2008). [CrossRef] [PubMed]
  9. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007). [CrossRef]
  10. H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum key distribution system with up-conversion pump wavelength at 1550 nm,” Opt. Express15(12), 7247–7260 (2007). [CrossRef] [PubMed]
  11. L. Ma, J. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express19(6), 5470–5479 (2011). [CrossRef] [PubMed]
  12. A. P. VanDevender and P. G. Kwiat, “Quantum transduction via frequency upconversion,” J. Opt. Soc. Am. B24(2), 295–299 (2007). [CrossRef]
  13. L. Ma, M. T. Rakher, M. J. Stevens, O. Slattery, K. Srinivasan, and X. Tang, “Temporal correlation of photons following frequency up-conversion,” Opt. Express19(11), 10501–10510 (2011). [CrossRef] [PubMed]
  14. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature437(7055), 116–120 (2005). [CrossRef] [PubMed]
  15. H. Takesue, “Erasing distinguishability using quantum frequency up-conversion,” Phys. Rev. Lett.101(17), 173901 (2008). [CrossRef] [PubMed]
  16. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion,” Nat. Photonics4(11), 786–791 (2010). [CrossRef]
  17. M. T. Rakher, L. Ma, M. Davanço, O. Slattery, X. Tang, and K. Srinivasan, “Simultaneous Wavelength Translation and Amplitude Modulation of Single Photons from a Quantum Dot,” Phys. Rev. Lett.107(8), 083602 (2011). [CrossRef] [PubMed]
  18. M. Asobe, O. Tadanaga, H. Miyazawa, Y. Nishida, and H. Suzuki, “Multiple quasi-phase-matched LiNbO3 wavelength converter with a continuously phase-modulated domain structure,” Opt. Lett.28(7), 558–560 (2003). [CrossRef] [PubMed]
  19. P. Kumar, “Quantum frequency conversion,” Opt. Lett.15(24), 1476–1478 (1990). [CrossRef] [PubMed]
  20. M. H. Chou, K. R. Parameswaran, M. M. Fejer, and I. Brener, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,” Opt. Lett.24(16), 1157–1159 (1999). [CrossRef] [PubMed]
  21. Y. W. Lee, F. C. Fan, Y. C. Huang, B. Y. Gu, B. Z. Dong, and M. H. Chou, “Nonlinear multiwavelength conversion based on an aperiodic optical superlattice in lithium niobate,” Opt. Lett.27(24), 2191–2193 (2002). [CrossRef] [PubMed]
  22. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, “Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett.27(3), 179–181 (2002). [CrossRef] [PubMed]
  23. Excelitas Technologies, “SPCM-AQRH: Single Photon Counting Module,” http://www.excelitas.com/downloads/DTS_SPCM_AQRH.pdf
  24. K. J. Gordon, V. Fernandez, G. S. Buller, I. Rech, S. D. Cova, and P. D. Townsend, “Quantum key distribution system clocked at 2 GHz,” Opt. Express13(8), 3015–3020 (2005). [CrossRef] [PubMed]
  25. J. C. Bienfang, A. Restelli, and A. Migdall, “SPAD electronics for high-speed quantum communications,” Proc. SPIE7945, 79452N, 79452N-5 (2011). [CrossRef]
  26. P. A. Andrekson and M. Westlund, “Nonlinear optical fiber based high resolution all-optical waveform sampling,” Laser Photon. Rev.1(3), 231–248 (2007). [CrossRef]
  27. O. Kuzucu, F. N. C. Wong, S. Kurimura, and S. Tovstonog, “Time-resolved single-photon detection by femtosecond upconversion,” Opt. Lett.33(19), 2257–2259 (2008). [CrossRef] [PubMed]
  28. J. Huang, C. Langrock, X. P. Xie, and M. M. Fejer, “Monolithic 160 Gbit/s optical time-division multiplexer,” Opt. Lett.32(16), 2420–2422 (2007). [CrossRef] [PubMed]
  29. W. Robert, Boyd, Nonlinear Optics, 2nd ed. (Academic Press, 2003).
  30. J. R. Kurz, J. Huang, X. Xie, T. Saida, and M. M. Fejer, “Mode multiplexing in optical frequency mixers,” Opt. Lett.29(6), 551–553 (2004). [CrossRef] [PubMed]
  31. B. H. Kolner and M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett.14(12), 630–632 (1989). [CrossRef] [PubMed]
  32. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron.30(8), 1951–1963 (1994). [CrossRef]
  33. C. V. Bennett and B. H. Kolner, “Principles of Parametric Temporal Imaging —Part I: System Configurations,” IEEE J. Quantum Electron.36(4), 430–437 (2000). [CrossRef]
  34. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 × 128 Single-Photon Image Sensor with Column-Level 10-Bit Time-to-Digital Converter Array,” IEEE J. Solid-state Circuits43(12), 2977–2989 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited