OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19148–19159

Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging

Hyun-Woo Jeong, Sang-Won Lee, and Beop-Min Kim  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19148-19159 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present Fourier-domain/spectral-domain optical coherence tomography (FD/SD-OCT) using a single spectrometer with dual illumination and interlaced detection at 830 nm, which can provide anterior segment and retinal tomograms simultaneously. Two orthogonal polarization components were used so that both parallel and focused beams could simultaneously be made incident on the eye. This configuration with a polarization-separated sample arm enables us to acquire images from the anterior segment and retina effectively with minimum loss of sample information. In the detector arm, a single spectrometer is illuminated via an ultrafast optical switch for interlaced detection. A graphical user interface (GUI) was built to control the optical switch for imaging the anterior segment and retina either simultaneously or individually. In addition, we implemented an off-pivot complex conjugate removal technique to double the imaging depth for anterior segment imaging. The axial resolution of our FD/SD-OCT system was measured to be ~6.7 μm in air, which corresponds to 4.9 μm in tissue (n = 1.35). The sensitivity was approximately 90 dB for both anterior segment and retina imaging when the acquisition speed was 35,000 A-scans per second and the depth position was near 120 μm from the zero-depth location. Finally, we demonstrated the feasibility of our system for simultaneous in vivo imaging of both the anterior segment and retina of a healthy human volunteer.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 11, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 22, 2012
Published: August 6, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Hyun-Woo Jeong, Sang-Won Lee, and Beop-Min Kim, "Spectral-domain OCT with dual illumination and interlaced detection for simultaneous anterior segment and retina imaging," Opt. Express 20, 19148-19159 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, K. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  3. R. Leitgeb, C. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-8-889 . [CrossRef] [PubMed]
  4. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-18-2183 . [CrossRef] [PubMed]
  5. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Express11(26), 3598–3604 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-26-3598 . [CrossRef] [PubMed]
  6. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-20-2975 . [CrossRef] [PubMed]
  7. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-35-17-2919 . [CrossRef] [PubMed]
  8. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-14-2049 . [CrossRef] [PubMed]
  9. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-17-1221 . [CrossRef] [PubMed]
  10. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med.7(4), 502–507 (2001). [CrossRef] [PubMed]
  11. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher, W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. Russell, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11(17), 1980–1986 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-1980 . [CrossRef] [PubMed]
  12. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-11-2404 . [CrossRef] [PubMed]
  13. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-15149 . [CrossRef] [PubMed]
  14. L. An, P. Li, T. T. Shen, and R. K. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express2(10), 2770–2783 (2011), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-10-2770 . [CrossRef] [PubMed]
  15. M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” Arch. Ophthalmol.113(8), 1019–1029 (1995). [CrossRef] [PubMed]
  16. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, “Imaging of macular diseases with optical coherence tomography,” Ophthalmology102(2), 217–229 (1995). [PubMed]
  17. J. S. Schuman, M. R. Hee, A. V. Arya, T. Pedut-Kloizman, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Optical coherence tomography: a new tool for glaucoma diagnosis,” Curr. Opin. Ophthalmol.6(2), 89–95 (1995). [CrossRef] [PubMed]
  18. M. R. Hee, C. A. Puliafito, J. S. Duker, E. Reichel, J. G. Coker, J. R. Wilkins, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Topography of diabetic macular edema with optical coherence tomography,” Ophthalmology105(2), 360–370 (1998). [CrossRef] [PubMed]
  19. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol.121(5), 695–706 (2003). [CrossRef] [PubMed]
  20. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007). [CrossRef] [PubMed]
  21. R. N. Khurana, Y. Li, M. Tang, M. M. Lai, and D. Huang, “High-speed optical coherence tomography of corneal opacities,” Ophthalmology114(7), 1278–1285 (2007). [CrossRef] [PubMed]
  22. B. J. Kaluzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea27(7), 830–832 (2008). [CrossRef] [PubMed]
  23. C. K. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology112(6), 980–984 (2005). [CrossRef] [PubMed]
  24. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-6-6109 . [CrossRef] [PubMed]
  25. H.-W. Jeong and B.-M. Kim, “High-speed spectral domain optical coherence tomography with dual detection of the retina and the cornea,” in Proceedings of IQEC/CLEO Pacific Rim, K. Baldwin, ed. (Australian Optical Society, Australia, 2011), pp. 691–692.
  26. A.-H. Dhalla, D. Nankivil, T. Bustamante, A. Kuo, and J. A. Izatt, “Simultaneous swept source optical coherence tomography of the anterior segment and retina using coherence revival,” Opt. Lett.37(11), 1883–1885 (2012), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-37-11-1883 . [CrossRef] [PubMed]
  27. M. Ruggeri, S. R. Uhlhorn, C. De Freitas, A. Ho, F. Manns, and J.-M. Parel, “Imaging and full-length biometry of the eye during accommodation using spectral domain OCT with an optical switch,” Biomed. Opt. Express3(7), 1506–1520 (2012), http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-3-7-1506 . [CrossRef]
  28. S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm,” J. Biomed. Opt.15(1), 010501 (2010). [CrossRef] [PubMed]
  29. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett.90(5), 054103 (2007). [CrossRef]
  30. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express15(20), 13375–13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-13375 . [CrossRef] [PubMed]
  31. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett.32(23), 3453–3455 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-23-3453 . [CrossRef] [PubMed]
  32. T. J. Eom, Y. C. Ahn, C. S. Kim, and Z. Chen, “Calibration and characterization protocol for spectral-domain optical coherence tomography using fiber Bragg gratings,” J. Biomed. Opt.16(3), 030501 (2011). [CrossRef] [PubMed]
  33. ANSI Z 136.1, Safe Use of Lasers, (American National Standard Institute, 2007).
  34. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 . [CrossRef] [PubMed]
  35. B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt.12(4), 041214 (2007). [CrossRef] [PubMed]
  36. L. Sang-Won, J. Hyun-Woo, A. Yeh-Chan, J. Woonggyu, C. Zhongping, and K. Beop-Min, “Optimization for axial resolution, depth range, and sensitivity of spectral domain optical coherence tomography at 1.3 μm,” J. Korean Phys. Soc.55(6), 2354–2360 (2009). [CrossRef]
  37. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-4-3044 . [CrossRef] [PubMed]
  38. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004). [CrossRef] [PubMed]
  39. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-397 . [PubMed]
  40. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express15(3), 1054–1063 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-1054 . [CrossRef] [PubMed]
  41. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express15(5), 2421–2431 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2421 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited