OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19214–19225

Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator

N. D. Singh, M. Moocarme, B. Edelstein, N. Punnoose, and L. T. Vuong  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19214-19225 (2012)
http://dx.doi.org/10.1364/OE.20.019214


View Full Text Article

Enhanced HTML    Acrobat PDF (4945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We experimentally, analytically, and numerically demonstrate the nonlinear photo-induced plasmon-assisted magnetic response that occurs with metallic nanoparticles in aqueous solution. We measure the scattered spectra from solutions of gold nanospheres (10−7 fill factor) and observe appreciable changes when simultaneously applying DC magnetic fields and illuminating samples with light. The magnetic response is achieved using light from a solar simulator at unprecedented low illumination intensities (< 1W/cm2) and is sustained when the magnetic field is removed. Distinctly different behavior is observed depending on the circular-polarization handedness given a fixed magnetic field. Nanoparticle aggregation is more likely to occur when the circular-polarization trajectory opposes the solenoid current that produces the magnetic field. Using Mie’s theoretical solution, we show how vortex orbital surface currents lead to an increased and anisotropic electrical conductivity, which shifts the scattered spectra in agreement with experimental results. The single-nanoparticle plasmon-induced magnetization, which couples the scattered and incident electric fields, changes sign with orthogonal circular-polarization handedness.

© 2012 OSA

OCIS Codes
(190.5940) Nonlinear optics : Self-action effects
(260.0260) Physical optics : Physical optics
(160.4236) Materials : Nanomaterials

ToC Category:
Metamaterials

History
Original Manuscript: May 2, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 25, 2012
Published: August 8, 2012

Citation
N. D. Singh, M. Moocarme, B. Edelstein, N. Punnoose, and L. T. Vuong, "Anomalously-large photo-induced magnetic response of metallic nanocolloids in aqueous solution using a solar simulator," Opt. Express 20, 19214-19225 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19214


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Meixner, “The behavior of electromagnetic fields at edges,” Antennas Propaga.20, 442–446 (1972). [CrossRef]
  2. N. B. Baranova, B. Ya. Zel’dovich, A. V. Mamaev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” J. Exp. Theor. Phys. Lett.33, 195–199 (1981).
  3. D. Rozas, C. T. Law, and G. A. Swartzlander, “Propagation dynamics of optical vortices,” J. Opt. Soc. Amer. B14, 3054–3065 (1997). [CrossRef]
  4. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett.90, 107404 (2003). [CrossRef] [PubMed]
  5. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett.95, 227401 (2005). [CrossRef] [PubMed]
  6. V.P. Drachev, W. D. Bragg, V. A. Podolskiy, V. P. Safonov, W.-T. Kim, Z. C. Ying, R. L. Armstrong, and V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Amer. B18, 1896–1903 (2001). [CrossRef]
  7. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” App. Phys. Lett.83, 2713–2715 (2003). [CrossRef]
  8. A. Alu, A. Salandrino, and N. Engheta, “Negative effective permeability and left-handed materials at optical frequencies,” Opt. Express14, 1557–1567 (2006). [CrossRef] [PubMed]
  9. J. A. Fan, C. Wu, K. Bao, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, “Self-assembled plasmonic nanoparticle clusters,” 328, 1135–1138 (2010).
  10. P. N. Stavrinou and L. Solymar, “Pulse delay and propagation through subwavelength metallic slits,” Phys. Rev. E68, 066604 (2003). [CrossRef]
  11. D. Crouse and P. Keshavareddy, “Role of optical and surface plasmon modes in enhanced transmission and applications,” Opt. Express13, 7760–7771 (2005). [CrossRef] [PubMed]
  12. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7, 1996–1999 (2007). [CrossRef]
  13. H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White, and S. H. Sun, “Dumbbell-like bifunctional Au-Fe3O4 nanoparticles,” Nano Lett.5, 379–382 (2005). [CrossRef] [PubMed]
  14. H. Deng, J. Liu, W. Zhao, W. Zhang, X. Lin, T. Sun, Q. Dai, L. Wu, S. Lan, and A. V. Gopal, “Enhancement of switching speed by laser-induced clustering of nanoparticles in magnetic fluids,” App. Phys. Lett.92, 233103 (2008). [CrossRef]
  15. S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Burgi, N. Shalkevich, and F. Lederer, “Optical properties of a fabricated self-assembled bottom-up bulk metamaterial,” Opt. Express19, 9607–9616 (2011). [CrossRef] [PubMed]
  16. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mat.9, 193–204 (2010). [CrossRef]
  17. L. T. Vuong, A. J. L. Adam, J. M. Brok, and H. P. Urbach, “Electromagnetic spin-orbit interactions via scattering of sub-wavelength apertures,” Phys. Rev. Lett.104, 083903 (2010). [CrossRef] [PubMed]
  18. S. N. Volkov, K. Dolgaleva, R. W. Boyd, K. Jefimovs, J. Turunen, Y. Svirko, B.K. Canfield, and M. Kauranen, “Optical activity in diffraction from a planar array of achiral nanoparticles,” Phys. Rev. A79, 043819 (2009). [CrossRef]
  19. S. N. Sheikholeslami, A. García-Etxarri, and J. A. Dionne, “Controlling the interplay of electric and magnetic modes via Fano-like plasmonic resonances,” Nano Lett.11, 3927–3934 (2011). [CrossRef] [PubMed]
  20. B. S. Luk’yanchuk and V. Ternovsky, “Light scattering by a thin wire with a surface-plasmon resonance: bifurcations of the Poynting vector eld,” Phys. Rev. B73, 235432 (2006). [CrossRef]
  21. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express13, 8372–8379 (2005). [CrossRef] [PubMed]
  22. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale4, 76–90 (2012). [CrossRef]
  23. M. Durach, A. Rusina, and M. I. Stockman, “Giant surface-plasmon-induced drag effect in metal nanowires,” Phys. Rev. Lett.103, 186801 (1990). [CrossRef]
  24. V. L. Gurevich, R. Laiho, and A. V. Lashkul, “Photomagnetism of metals,” Phys. Rev. Lett.69, 180–183 (1992). [CrossRef] [PubMed]
  25. V. L. Gurevich and R. Laiho, “Photomagnetism of metals: microscopic theory of the photoinduced surface current,” Phys. Rev. B48, 8307–8316 (1993). [CrossRef]
  26. O. Keller and G. Wang, “Angular momentum photon drag in a mesoscopic ring,” Opt. Commun.138, 75–80 (1997). [CrossRef]
  27. A. S. Vengurlekar and T. Ishihara, “Surface plasmon enhanced photon drag in metal films,” App. Phys. Lett.87, 091118 (2005). [CrossRef]
  28. N. Noginova, A. V. Yakim, J. Soimo, L. Gu, and M. A. Noginov, “Light-to-current and current-to-light coupling in plasmonic systems,” Phys. Rev. B84, 035447 (2011). [CrossRef]
  29. Y. Gu and K. G. Kornev, “Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites,” J. Opt. Soc. Am. B.27, 2165–2173 (2010). [CrossRef]
  30. R. Hertel, “Theory of the inverse Faraday effect in metals,” Journal of Magnetism and Magnetic Materials303, L1–L4 (2006). [CrossRef]
  31. D. Nykypanchuk, M. M. Mayer, D. van der Lelie, and O. Gang, “DNA-guided crystallization of colloidal nanoparticles,” Nature451, 549–552 (2008). [CrossRef] [PubMed]
  32. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, Cambridge, 1999), pp. 760–771.
  33. N. Satoh, H. Hasegawa, K. Tsujii, and K. Kimura, “Photoinduced coagulation of Au nanocolloids,” J. Phys. Chem.98, 2143–2147 (1994). [CrossRef]
  34. C. Timm and K. H. Bennemann, “Response theory for time-resolved second-harmonic generation and two-photon photoemission,” J. Phys.: Cond. Matt.16, 661–694 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited