OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19279–19288

InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy

Michele Natrella, Efthymios Rouvalis, Chin-Pang Liu, Huiyun Liu, Cyril C. Renaud, and Alwyn J. Seeds  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19279-19288 (2012)
http://dx.doi.org/10.1364/OE.20.019279


View Full Text Article

Enhanced HTML    Acrobat PDF (1252 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz −3 dB bandwidth and −5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

© 2012 OSA

OCIS Codes
(160.1890) Materials : Detector materials
(160.6000) Materials : Semiconductor materials
(230.5170) Optical devices : Photodiodes
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Optical Devices

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: July 29, 2012
Published: August 8, 2012

Citation
Michele Natrella, Efthymios Rouvalis, Chin-Pang Liu, Huiyun Liu, Cyril C. Renaud, and Alwyn J. Seeds, "InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy," Opt. Express 20, 19279-19288 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19279


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Nagatsuma, H. Ito, and T. Ishibashi, “High-power photodiodes and their applications,” Laser Photonics Rev.3, 123–137 (2009). [CrossRef]
  2. E. Rouvalis, C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “Continuous wave terahertz generation from ultra-fast InP-based photodiodes,” IEEE Trans. Microw. Theory Tech.60(3), 509–517 (2012). [CrossRef]
  3. A. Beling, Z. Li, Y. Fu, H. Pan, and J. C. Campbell, “High-power and high-linearity photodiodes,” IEEE Photonic Society 24th Annual Meeting 1, 19–20 (2011).
  4. X. Wang, N. Duan, H. Chen, and J. C. Campbell, “InGaAs – InP photodiodes with high responsivity and high saturation power,” IEEE Photon. Technol. Lett.19(16), 1272–1274 (2007). [CrossRef]
  5. H. Ito, T. Furuta, S. Kodama, and T. Ishibashi, “InP/InGaAs uni-travelling-carrier photodiode with 310 GHz bandwidth,” Electron. Lett.36(21), 1809–1810 (2000). [CrossRef]
  6. H. Ito, T. Nagatsuma, A. Hirata, T. Minotani, A. Sasaki, Y. Hirota, and T. Ishibashi, “High-power photonic millimetre wave generation at 100 GHz using matching-circuit-integrated uni-travelling-carrier photodiodes,” in IEE Proc.-Optoelectron. - (IET, 2003), 150, 138–142.
  7. H. Ito, F. Nakajima, T. Furuta, and T. Ishibashi, “Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes,” Semicond. Sci. Technol.20(7), S191–S198 (2005). [CrossRef]
  8. C. Renaud, D. Moodie, M. Robertson, and A. Seeds, “High output power at 110 GHz with a waveguide uni-travelling carrier photodiode,” Lasers and Electro-Optics Society 2007. LEOS 2007. The 20th Annual Meeting of the IEEE 782–783 (2007).
  9. C. Renaud, M. Robertson, D. Rogers, R. Firth, P. Cannard, R. Moore, and A. Seeds, “A high responsivity, broadband waveguide uni-travelling carrier photodiode,” Proc. SPIE6194, 61940C (2006).
  10. E. Rouvalis, C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, “Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation,” Opt. Express18(11), 11105–11110 (2010). [CrossRef] [PubMed]
  11. C. Doerr, “InP-based high-speed photonic devices,” in Proceedings of Optical Fiber Communications (OFC)/National Fiber Optic Engineers Conf. (2008).
  12. J. Baillargeon, A. Cho, F. Thiel, R. J. Fischer, P. J. Pearah, and K. Y. Cheng, “Reproducibility studies of lattice matched InGaAsP on (100) InP grown by molecular beam epitaxy using solid phosphorus,” Appl. Phys. Lett.65(2), 207–209 (1994). [CrossRef]
  13. C. C. Wamsley, M. W. Koch, and G. W. Wicks, “Solid source molecular beam epitaxy of InGaAsP/InP: growth mechanisms and machine operation,” J. Vac. Sci. Technol. B14(3), 2322–2324 (1996). [CrossRef]
  14. M. Pessa, M. Toivonen, M. Jalonen, P. Savolainen, and A. Salokatve, “All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors,” Thin Solid Films306(2), 237–243 (1997). [CrossRef]
  15. P. A. Claxton, J. S. Roberts, J. P. R. David, C. M. Sotomayor-Torres, M. S. Skolnick, P. R. Tapster, and K. J. Nash, “Growth and characterisation of quantum wells and selectively doped heterostructures of InP/Ga0.47In0.53As grown by solid source MBE,” J. Cryst. Growth81(1-4), 288–295 (1987). [CrossRef]
  16. E. Schubert, S. Downey, C. Pinzone, and A. Emerson, “Evidence of very strong inter-epitaxial-layer diffusion in Zn-doped GaInPAs/InP structures,” Appl. Phys. Mater. Sci.60, 525–527 (1995).
  17. N. Otsuka, M. Kito, M. Ishino, Y. Matsui, and F. Toujou, “Control of double diffusion front unintentionally penetrated from a Zn doped InP layer during metalorganic vapor phase epitaxy,” J. Appl. Phys.84(8), 4239 (1998). [CrossRef]
  18. M. Henini, “Recent developments in InP and related compounds,” III-Vs Rev.13(2), 34–43 (2000). [CrossRef]
  19. M. Panish, “Molecular beam epitaxy of GaAs and InP with gas sources for As and P,” J. Electrochem. Soc.127(12), 2729–2733 (1980). [CrossRef]
  20. D. Miller and S. Bose, “Design and operation of a valved solid-source As2 oven for molecular beam epitaxy,” J. Vac. Sci. Technol. B8(2), 311–315 (1990). [CrossRef]
  21. G. Wicks, M. Koch, J. Varriano, F. G. Johnson, C. R. Wie, H. M. Kim, and P. Colombo, “Use of a valved, solid phosphorus source for the growth of Ga0.5In0.5P and Al0.5In0.5P by molecular beam epitaxy,” Appl. Phys. Lett.59(3), 342–344 (1991). [CrossRef]
  22. M. Toivonen, A. Salokatve, M. Jalonen, J. Näppi, H. Asonen, M. Pessa, and R. Murison, “All solid source molecular beam epitaxy growth of 1.35 μm wavelength strained-layer InGaAsP quantum well laser,” Electron. Lett.31(10), 797–799 (1995). [CrossRef]
  23. C. P. Liu, A. Seeds, J. S. Chadha, P. N. Stavrinou, G. Parry, M. Whitehead, A. B. Krysa, and J. S. Roberts, “Design fabrication and characterisation of normal-incidence 1.56-mum multiple-quantum-well asymmetric Fabry-Perot modulators for passive picocells,” IEICE Trans. Electron. E Series C 86, 1281–1289 (2003).
  24. F. Fiedler, A. Schlachetzki, and G. Klein, “Material-selective etching of InP and an InGaAsP alloy,” J. Mater. Sci.17(10), 2911–2918 (1982). [CrossRef]
  25. D. Pasquariello, E. Bjorlin, D. Lasaosa, Y.-J. Chiu, J. Piprek, and J. E. Bowers, “Selective undercut etching of InGaAs and InGaAsP quantum wells for improved performance of long-wavelength optoelectronic devices,” J. Lightwave Technol.24(3), 1470–1477 (2006). [CrossRef]
  26. S. Phatak and G. Kelner, “Material-selective chemical etching in the system InGaAsP/ InP,” J. Electrochem. Soc.126(2), 287 (1979). [CrossRef]
  27. S. Adachi, “Chemical etching of InP and InGaAsP/InP,” J. Electrochem. Soc.129(3), 609 (1982). [CrossRef]
  28. K. Williams and R. D. Esman, “Design considerations for high-current photodetectors,” J. Lightwave Technol.17(8), 1443–1454 (1999). [CrossRef]
  29. G. Davis, R. Weiss, R. LaRue, K. J. Williams, and R. D. Esman, “A 920-1650-nm high-current photodetector,” IEEE Photon. Technol. Lett.8(10), 1373–1375 (1996). [CrossRef]
  30. N. Duan, X. Wang, N. Li, H. Liu, and J. C. Campbell, “Thermal analysis of high-power InGaAs–InP photodiodes,” IEEE J. Quantum Electron.42(12), 1255–1258 (2006). [CrossRef]
  31. M. Chtioui, D. Carpentier, S. Bernard, B. Rousseau, F. Lelarge, F. Pommereau, C. Jany, A. Enard, and M. Achouche, “Thick absorption layer uni-traveling-carrier photodiodes with high responsivity, high speed, and high saturation power,” IEEE Photon. Technol. Lett.21(7), 429–431 (2009). [CrossRef]
  32. M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. van Dijk, and M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photon. Technol. Lett.24(4), 318–320 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited