OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19382–19394

Complex refractive index variation in proton-damaged diamond

S. Lagomarsino, P. Olivero, S. Calusi, D. Gatto Monticone, L. Giuntini, M. Massi, S. Sciortino, A. Sytchkova, A. Sordini, and M. Vannoni  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19382-19394 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1356 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An accurate control of the optical properties of single crystal diamond during microfabrication processes such as ion implantation plays a crucial role in the engineering of integrated photonic devices. In this work we present a systematic study of the variation of both real and imaginary parts of the refractive index of single crystal diamond, when damaged with 2 and 3 MeV protons at low-medium fluences (range: 1015 - 1017 cm−2). After implanting in 125 × 125 μm2 areas with a scanning ion microbeam, the variation of optical pathlength of the implanted regions was measured with laser interferometric microscopy, while their optical transmission was studied using a spectrometric set-up with micrometric spatial resolution. On the basis of a model taking into account the strongly non-uniform damage profile in the bulk sample, the variation of the complex refractive index as a function of damage density was evaluated.

© 2012 OSA

OCIS Codes
(120.6650) Instrumentation, measurement, and metrology : Surface measurements, figure
(160.4760) Materials : Optical properties
(180.3170) Microscopy : Interference microscopy
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: March 27, 2012
Revised Manuscript: May 13, 2012
Manuscript Accepted: May 14, 2012
Published: August 9, 2012

S. Lagomarsino, P. Olivero, S. Calusi, D. Gatto Monticone, L. Giuntini, M. Massi, S. Sciortino, A. Sytchkova, A. Sordini, and M. Vannoni, "Complex refractive index variation in proton-damaged diamond," Opt. Express 20, 19382-19394 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kok and B. W. Lovett, “Materials science: Qubits in the pink,” Nature444(7115), 49–49 (2006). [CrossRef] [PubMed]
  2. I. Aharonovich, C. Zhou, A. Stacey, J. Orwa, S. Castelletto, D. Simpson, A. D. Greentree, F. Treussart, J.-F. Roch, and S. Prawer, “Enhanced single-photon emission in the near infrared from a diamond color center,” Phys. Rev. B79(23), 235316 (2009). [CrossRef]
  3. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation,” J. Phys. B39(1), 37–41 (2006). [CrossRef]
  4. I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, D. A. Simpson, A. D. Greentree, and S. Prawer, “Chromium single-photon emitters in diamond fabricated by ion implantation,” Phys. Rev. B81(12), 121201 (2010). [CrossRef]
  5. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, “Single photon quantum cryptography,” Phys. Rev. Lett.89(18), 187901 (2002). [CrossRef] [PubMed]
  6. S. Prawer and A. D. Greentree, “Applied physics. Diamond for quantum computing,” Science320(5883), 1601–1602 (2008). [CrossRef] [PubMed]
  7. M. P. Hiscocks, C. J. Kaalund, F. Ladouceur, S. T. Huntington, B. C. Gibson, S. Trpkovski, D. Simpson, E. Ampem-Lassen, S. Prawer, and J. E. Butler, “Reactive ion etching of waveguide structures in diamond,” Diamond Related Materials17(11), 1831–1834 (2008). [CrossRef]
  8. M. P. Hiscocks, K. Ganesan, B. C. Gibson, S. T. Huntington, F. Ladouceur, and S. Prawer, “Diamond waveguides fabricated by reactive ion etching,” Opt. Express16(24), 19512–19519 (2008). [CrossRef] [PubMed]
  9. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimensional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett.91(20), 201112 (2007). [CrossRef]
  10. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, R. A. Taylor, I. Walmsley, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. (Deerfield Beach Fla.)20(24), 4793–4798 (2008). [CrossRef]
  11. C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett.90(8), 081110 (2007). [CrossRef]
  12. S. Lagomarsino, P. Olivero, F. Bosia, M. Vannoni, S. Calusi, L. Giuntini, and M. Massi, “Evidence of Light Guiding in Ion-Implanted Diamond,” Phys. Rev. Lett.105(23), 233903 (2010). [CrossRef] [PubMed]
  13. S. Tomljenovic-Hanic, A. D. Greentree, C. M. de Sterke, and S. Prawer, “Flexible design of ultrahigh-Q microcavities in diamond-based photonic crystal slabs,” Opt. Express17(8), 6465–6475 (2009). [CrossRef] [PubMed]
  14. E. Gu, H. W. Choi, C. Liu, C. Griffin, J. M. Girkin, I. M. Watson, M. D. Dawson, G. McConnell, and A. M. Gurney, “Reflection/transmission confocal microscopy characterization of single-crystal diamond microlens arrays,” Appl. Phys. Lett.84(15), 2754–2756 (2004). [CrossRef]
  15. Y. Fu and B. K. A. Ngoi, “Investigation of diffractive optical element fabricated on diamond film by use of focused ion beam direct milling,” Opt. Eng.42(8), 2214–2217 (2003). [CrossRef]
  16. S. Gloor, V. Romano, W. Lüthy, H. P. Weber, V. V. Kononenko, S. M. Pimenov, V. I. Konov, and A. V. Khomich, “Antireflection structures written by excimer laser on CVD diamond,” Appl. Phys., A Mater. Sci. Process.70(5), 547–550 (2000). [CrossRef]
  17. H. Björkman, P. Rangsten, and K. Hjort, “Diamond microstructures for optical micro electromechanical systems,” Sens. Actuators78(1), 41–47 (1999). [CrossRef]
  18. R. L. Hines, “Radiation Damage of Diamond by 20-keV Carbon Ions,” Phys. Rev.138(6A), A1747–A1751 (1965). [CrossRef]
  19. M. G. Jubber, M. Liehr, J. L. McGrath, J. I. B. Wilson, I. C. Drummond, P. John, D. K. Milne, R. W. McCullough, J. Geddes, D. P. Higgins, and M. Schlapp, “Atom beam treatment of diamond films,” Diamond Related Materials4(4), 445–450 (1995). [CrossRef]
  20. A. Battiato, F. Bosia, S. Ferrari, P. Olivero, A. Sytchkova, and E. Vittone, “Spectroscopic measurement of the refractive index of ion-implanted diamond,” Opt. Lett.37(4), 671–673 (2012). [CrossRef] [PubMed]
  21. P. Olivero, S. Calusi, L. Giuntini, S. Lagomarsino, A. Lo Giudice, M. Massi, S. Sciortino, M. Vannoni, and E. Vittone, “Controlled variation of the refractive index in ion-damaged diamond,” Diamond Related Materials19(5-6), 428–431 (2010). [CrossRef]
  22. K. L. Bhatia, S. Fabian, S. Kalbitzer, C. Klatt, W. Krätschmer, R. Stoll, and J. F. P. Sellschop, “Optical effects in carbon-ion irradiated diamond,” Thin Solid Films324(1-2), 11–18 (1998). [CrossRef]
  23. A. V. Khomich, V. I. Kovalev, E. V. Zavedeev, R. A. Khmelnitskiy, and A. A. Gippius, “Spectroscopic ellipsometry study of buried graphitized layers in the ion-implanted diamond,” Vacuum78(2-4), 583–587 (2005). [CrossRef]
  24. A. A. Bettiol, S. V. Rao, E. J. Teo, J. A. van Kan, and F. Watt, “Fabrication of buried channel waveguides in photosensitive glass using proton beam writing,” Appl. Phys. Lett.88(17), 171106 (2006). [CrossRef]
  25. F. Chen, L. Wang, Y. Jiang, X.-L. Wang, K.-M. Wang, G. Fu, Q.-M. Lu, C. E. Rüter, and D. Kip, “Optical channel waveguides in Nd: YVO4 crystal produced by O+ ion implantation,” Appl. Phys. Lett.88(7), 071123 (2006). [CrossRef]
  26. L. Giuntini, M. Massi, and S. Calusi, “The external scanning proton microprobe of Firenze: a comprehensive description,” Nucl. Instrum. Methods Phys. Res. A576(2-3), 266–273 (2007). [CrossRef]
  27. K. Creath, “Phase-shifting interferometry techniques,” in Progress in Optics (Elsevier, 1988).
  28. A. K. Sytchkova, J. Bulir, and A. M. Piegari, “Transmittance measurements on variable coatings with enhanced spatial resolution,” Chin. Opt. Lett.8, 103–104 (2010). [CrossRef]
  29. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985)
  30. E. W. Maby, C. W. Magee, and J. H. Morewood, “Volume expansion of ion-implanted diamond,” Appl. Phys. Lett.39(2), 157–158 (1981). [CrossRef]
  31. J. F. Prins, T. E. Derry, and J. P. Sellschop, “Volume expansion of diamond during ion implantation,” Phys. Rev. B Condens. Matter34(12), 8870–8874 (1986). [CrossRef] [PubMed]
  32. M. Massi, L. Giuntini, M. Chiari, N. Gelli, and P. A. Mandò, “The external beam microprobe facility in Florence: set-up and performance,” Nucl. Instrum. Methods Phys. Res. B190(1-4), 276–282 (2002). [CrossRef]
  33. S. Calusi, E. Colombo, L. Giuntini, A. L. Giudice, C. Manfredotti, M. Massi, G. Pratesi, and E. Vittone, “The ionoluminescence apparatus at the LABEC external microbeam facility,” Nucl. Instrum. Methods Phys. Res. B2662306–2310 (2008). [CrossRef]
  34. P. A. Mandò, “Advantages and limitations of external beams in applications to arts & archeology, geology and environmental problems,” Nucl. Instrum. Methods Phys. Res. B85(1-4), 815–823 (1994). [CrossRef]
  35. T. Calligaro, J.-C. Dran, E. Ioannidou, B. Moignard, L. Pichon, and J. Salomon, “Development of an external beam nuclear microprobe on the Aglae facility of the Louvre museum,” Nucl. Instrum. Methods Phys. Res. B161–163, 328–333 (2000). [CrossRef]
  36. P. A. Mandò, “Measurement of low currents in an external beam set-up,” Nucl. Instrum. Methods Phys. Res. B85, 815 (1994).
  37. M. Chiari, A. Migliori, and P. A. Mandò, “Measurement of low currents in an external beam set-up,” Nucl. Instrum. Methods Phys. Res. B188, 162–165 (2002). [CrossRef]
  38. M. Vannoni, G. Molesini, S. Sciortino, S. Lagomarsino, P. Olivero, and E. Vittone, “Interferometric characterization of mono-and polycrystalline CVD diamond,” Proc. SPIE7389, 738931, 738931-6 (2009). [CrossRef]
  39. J. H. Bruning, “Fringe Scanning Interferometers,” in Optical Shop Testing (Wiley, 1978).
  40. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM – The stopping and range of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res. B268(11-12), 1818–1823 (2010). [CrossRef]
  41. W. Wu and S. Fahy, “Molecular-dynamics study of single-atom radiation damage in diamond,” Phys. Rev. B Condens. Matter49(5), 3030–3035 (1994). [CrossRef] [PubMed]
  42. C. Uzan-Saguy, C. Cytermann, R. Brener, V. Richter, M. Shaanan, and R. Kalish, “Damage threshold for ion-beam induced graphitization of diamond,” Appl. Phys. Lett.67(9), 1194–1196 (1995). [CrossRef]
  43. P. Olivero, S. Rubanov, P. Reichart, B. C. Gibson, S. T. Huntington, J. R. Rabeau, A. D. Greentree, J. Salzman, D. Moore, D. N. Jamieson, and S. Prawer, “Characterization of three-dimensional microstructures in single-crystal diamond,” Diamond Related Materials15(10), 1614–1621 (2006). [CrossRef]
  44. D. P. Hickey, K. S. Jones, and R. G. Elliman, “Amorphization and graphitization of single-crystal diamond – a transmission electron microscopy study,” Diamond Related Materials18(11), 1353–1359 (2009). [CrossRef]
  45. R. L. Hines and R. Arndt, “Radiation effects of bombardment of quartz and vitreous silica by 7.5-kev to 59-kev positive ions,” Phys. Rev.119(2), 623–633 (1960). [CrossRef]
  46. L. Babsail, N. Hamelin, and P. D. Townsend, “Helium-ion implanted waveguides in zircon,” Nucl. Instrum. Methods Phys. Res. B59–60, 1219–1222 (1991). [CrossRef]
  47. D. T. Y. Wei, W. W. Lee, and L. R. Bloom, “Large refractive index change induced by ion implantation in lithium niobate,” Appl. Phys. Lett.25(6), 329–331 (1974). [CrossRef]
  48. L. Giuntini, “A review of external microbeams for ion beam analyses,” Anal. Bioanal. Chem.401(3), 785–793 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited