OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19404–19411

Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing

Yanjuan Liu, Yao Zhang, Hongxiang Lei, Jingwei Song, Hui Chen, and Baojun Li  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19404-19411 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1380 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thinned silica fibers were fabricated by drawing conventional single mode silica fiber through flame heated method and well-arrayed ZnO nanorods were grown on the thinned silica fibers by a hydrothermal method. The structure enables efficient light coupling between the fiber and the nanorods. With the unique property of high surface to volume ratio of one-dimensional ZnO nanorods, light coupled to nanorods array enhances the optical interaction between the device and the ambient environment. Sensitive humidity sensor was demonstrated by launching laser into ZnO nanorod-covered fibers. Theoretical and experimental results are presented.

© 2012 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(290.0290) Scattering : Scattering
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: June 6, 2012
Revised Manuscript: August 1, 2012
Manuscript Accepted: August 1, 2012
Published: August 9, 2012

Yanjuan Liu, Yao Zhang, Hongxiang Lei, Jingwei Song, Hui Chen, and Baojun Li, "Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing," Opt. Express 20, 19404-19411 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. T. Ng, J. Han, T. Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, “Single crystal nanowire vertical surround-gate field-effect transistor,” Nano Lett.4(7), 1247–1252 (2004). [CrossRef]
  2. X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, “A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm,” Nano Lett.8(4), 1219–1223 (2008). [CrossRef] [PubMed]
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  4. T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir22(13), 5804–5809 (2006). [CrossRef] [PubMed]
  5. B. Weintraub, Y. Wei, and Z. L. Wang, “Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl.48(47), 8981–8985 (2009). [CrossRef] [PubMed]
  6. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett.84(18), 3654–3656 (2004). [CrossRef]
  7. H. T. Wang, B. S. Kang, F. Ren, L. C. Tien, P. W. Sadik, D. P. Norton, S. J. Pearton, and J. Lin, “Hydrogen-selective sensing at room temperature with ZnO Nanorods,” Appl. Phys. Lett.86(24), 243503 (2005). [CrossRef]
  8. L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C111(5), 1900–1903 (2007). [CrossRef]
  9. F. Fang, J. Futter, A. Markwitz, and J. Kennedy, “UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method,” Nanotechnology20(24), 245502 (2009). [CrossRef] [PubMed]
  10. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. (Deerfield Beach Fla.)13(2), 113–116 (2001). [CrossRef]
  11. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” Appl. Phys. Lett.78(4), 407–409 (2001). [CrossRef]
  12. J. J. Wu and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater. (Deerfield Beach Fla.)14(3), 215–218 (2002). [CrossRef]
  13. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater. (Deerfield Beach Fla.)15(5), 464–466 (2003). [CrossRef]
  14. J. H. Lee, I. C. Leu, Y. W. Chung, and M. H. Hon, “Fabrication of ordered ZnO hierarchical structures controlled via surface charge in the electrophoretic deposition process,” Nanotechnology17(17), 4445–4450 (2006). [CrossRef]
  15. M. Wei, D. Zhi, and J. L. MacManus-Driscoll, “Self-catalysed growth of zinc oxide nanowires,” Nanotechnology16(8), 1364–1368 (2005). [CrossRef]
  16. S. H. Jo, D. Banerjee, and Z. F. Ren, “Field emission of zinc oxide nanowires grown on carbon cloth,” Appl. Phys. Lett.85(8), 1407–1409 (2004). [CrossRef]
  17. A. Umar, B. K. Kim, J. J. Kim, and Y. B. Hahn, “Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation,” Nanotechnology18(17), 175606 (2007). [CrossRef]
  18. T. Voss, G. T. Svacha, E. Mazur, S. Müller, C. Ronning, D. Konjhodzic, and F. Marlow, “High-order waveguide modes in ZnO nanowires,” Nano Lett.7(12), 3675–3680 (2007). [CrossRef] [PubMed]
  19. J. Yu, R. Feng, and W. She, “Low-power all-optical switch based on the bend effect of a nm fiber taper driven by outgoing light,” Opt. Express17(6), 4640–4645 (2009). [CrossRef] [PubMed]
  20. Z. Hu, G. Oskam, and P. C. Searson, “Influence of solvent on the growth of ZnO nanoparticles,” J. Colloid Interface Sci.263(2), 454–460 (2003). [CrossRef] [PubMed]
  21. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004). [CrossRef] [PubMed]
  22. R. Aneesh and S. K. Khijwania, “Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range,” Appl. Opt.50(27), 5310–5314 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited