OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19412–19419

3.7 W fluoride glass Raman fiber laser operating at 2231 nm

Vincent Fortin, Martin Bernier, Dominic Faucher, Julien Carrier, and Réal Vallée  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19412-19419 (2012)
http://dx.doi.org/10.1364/OE.20.019412


View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The first demonstration of a multi-watt continuous wave fluoride glass Raman fiber laser operating beyond 2.2 μm is reported. A maximum output power of 3.7 W was obtained from a nested cavity setup with a laser slope efficiency of 15% with respect to the launched pump power.

© 2012 OSA

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 13, 2012
Manuscript Accepted: August 5, 2012
Published: August 9, 2012

Citation
Vincent Fortin, Martin Bernier, Dominic Faucher, Julien Carrier, and Réal Vallée, "3.7 W fluoride glass Raman fiber laser operating at 2231 nm," Opt. Express 20, 19412-19419 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Vareille, O. Audouin, and E. Desurvire, “Numerical optimisation of power conversion efficiency in 1480nm multi-Stokes Raman fibre lasers,” Electron. Lett.34(7), 675–676 (1998). [CrossRef]
  2. N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, “1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation,” Opt. Commun.176(1-3), 219–222 (2000). [CrossRef]
  3. N. Kurukitkoson, H. Sugahara, S. K. Turitsyn, O. N. Egorova, A. S. Kurkov, V. M. Paramonov, and E. M. Dianov, “Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment,” Electron. Lett.37(21), 1281–1283 (2001). [CrossRef]
  4. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 μm,” Quantum Electron.34(8), 695–697 (2004). [CrossRef]
  5. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 microm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett.32(13), 1848–1850 (2007). [CrossRef] [PubMed]
  6. V. Fortin, M. Bernier, J. Carrier, and R. Vallée, “Fluoride glass Raman fiber laser at 2185 nm,” Opt. Lett.36(21), 4152–4154 (2011). [CrossRef] [PubMed]
  7. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett.32(5), 454–456 (2007). [CrossRef] [PubMed]
  8. M. Bernier, R. Vallée, B. Morasse, C. Desrosiers, A. Saliminia, and Y. Sheng, “Ytterbium fiber laser based on first-order fiber Bragg gratings written with 400 nm femtosecond pulses and a phase-mask,” Opt. Express17(21), 18887–18893 (2009). [CrossRef] [PubMed]
  9. J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett.15(12), 1698–1700 (2003). [CrossRef]
  10. P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun.237(1-3), 201–212 (2004). [CrossRef]
  11. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent CW fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010). [CrossRef] [PubMed]
  12. J. Xu, M. Prabhu, J. Lu, K.-I. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt.40(12), 1983–1988 (2001). [CrossRef] [PubMed]
  13. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol.17(5), 948–956 (1999). [CrossRef]
  14. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express14(1), 50–57 (2006). [CrossRef] [PubMed]
  15. M. Rini, I. Cristiani, and V. Degiorgio, “Numerical modeling and optimization of cascaded CW Raman fiber lasers,” IEEE J. Quantum Electron.36(10), 1117–1122 (2000). [CrossRef]
  16. L. Zhang, F. Gan, and P. Wang, “Evaluation of refractive-index and material dispersion in fluoride glasses,” Appl. Opt.33(1), 50–56 (1994). [CrossRef] [PubMed]
  17. P. F. Moulton, G. A. Rines, E. V. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. L. G. Carter, “Tm-doped fiber lasers: fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009). [CrossRef]
  18. B. M. Walsh and N. P. Barnes, “Comparison of Tm:ZBLAN and Tm: silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 μm,” Appl. Phys. B78(3-4), 325–333 (2004). [CrossRef]
  19. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallée, “20 W passively cooled single-mode all-fiber laser at 2.8 μm,” Opt. Lett.36(7), 1104–1106 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: JPG (425 KB)      QuickTime
» Media 2: JPG (445 KB)      QuickTime
» Media 3: JPG (423 KB)      QuickTime
» Media 4: JPG (656 KB)      QuickTime
» Media 5: JPG (488 KB)      QuickTime
» Media 6: JPG (901 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited