OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19449–19454

Time-evolution of electron density in plasma measured by high-order harmonic generation

Hua Yang, Peng Liu, Haihe Lu, Xiaochun Ge, Ruxin Li, and Zhizhan Xu  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19449-19454 (2012)
http://dx.doi.org/10.1364/OE.20.019449


View Full Text Article

Enhanced HTML    Acrobat PDF (907 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new method of measuring the electron density in plasma by high-order harmonic generation (HHG) of intense two-color femtosecond (fs) laser. As the 800 nm fundamental beam is introduced after its second harmonic generation (SHG) beam, the recovery of HHG by the fundamental pulses at a delay of ~40 ps indicates the decay time of the generated plasma. The electron-ion recombination rate and electron density decay are revealed by fitting the harmonic emission to the model that accounts for depletion of neutral atoms, phase mismatch and re-absorption of HHG.

© 2012 OSA

OCIS Codes
(350.5400) Other areas of optics : Plasmas
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: June 26, 2012
Revised Manuscript: July 19, 2012
Manuscript Accepted: July 27, 2012
Published: August 9, 2012

Citation
Hua Yang, Peng Liu, Haihe Lu, Xiaochun Ge, Ruxin Li, and Zhizhan Xu, "Time-evolution of electron density in plasma measured by high-order harmonic generation," Opt. Express 20, 19449-19454 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19449


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Formmhold, M. A. Biondi, and F. J. Mehr, “Electron–temperature dependence of electron-ion recombination in Neon,” Phys. Rev.165(1), 44–52 (1968). [CrossRef]
  2. F. J. Mehr and M. A. Biondi, “Electron-temperature dependence of electron-ion recombination in Argon,” Phys. Rev.176(1), 322–326 (1968). [CrossRef]
  3. I. M. Littlewood, M. C. Cornell, and K. J. Nygaard, “Electron-ion recombination in gas mixtures of helium, nitrogen, and carbon dioxide,” J. Chem. Phys.81(3), 1264–1270 (1984). [CrossRef]
  4. J. M. Warman, E. S. Sennhauser, and D. A. Armstrong, “Three body electron-ion recombination in molecular gases,” J. Chem. Phys.70(2), 995–999 (1979). [CrossRef]
  5. J. G. Xie, B. Luo, and D. Lo, “Electron-ion recombination in high pressure Ar/Xe mixtures,” J. Phys. At. Mol. Opt. Phys.24(13), 3077–3089 (1991). [CrossRef]
  6. N. L. Aleksandrov, S. V. Kindysheva, A. A. Kirpichnikov, I. N. Kosarev, S. M. Starikovskaia, and A. Y. Starikovskii, “Plasma decay in N2,CO2 and H2O excited by high-voltage nanosecond discharge,” J. Phys. D Appl. Phys.40(15), 4493–4502 (2007). [CrossRef]
  7. S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun.181(1-3), 123–127 (2000). [CrossRef]
  8. J. S. Liu, Z. L. Duan, Z. N. Zeng, X. H. Xie, Y. P. Deng, R. X. Li, Z. Z. Xu, and S. L. Chin, “Time-resolved investigation of low-density plasma channels produced by a kilohertz femtosecond laser in air,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(2), 026412 (2005). [CrossRef] [PubMed]
  9. P. B. Corkum and F. Krausz, “Attosecond science,” Nat. Phys.3(6), 381–387 (2007). [CrossRef]
  10. N. Dudovich, O. Smirnova, J. Levesque, Y. Mairesse, M. Yu. Ivanov, D. M. Villeneuve, and P. B. Corkum, “Measuring and controlling the birth of attosecond XUV pulses,” Nat. Phys.2(11), 781–786 (2006). [CrossRef]
  11. H. Niikura, N. Dudovich, D. M. Villeneuve, and P. B. Corkum, “Mapping molecular orbital symmetry on high-order harmonic generation spectrum using two-color laser fields,” Phys. Rev. Lett.105(5), 053003 (2010). [CrossRef] [PubMed]
  12. G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A64(1), 013409 (2001). [CrossRef]
  13. M. A. Biondi, “Studies of the mechanism of electron-ion recombination. I,” Phys. Rev.129(3), 1181–1188 (1963). [CrossRef]
  14. C. G. Durfee, A. R. Rundquist, S. Backus, C. Herne, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high-order harmonics in hollow waveguides,” Phys. Rev. Lett.83(11), 2187–2190 (1999). [CrossRef]
  15. A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P. Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-phase-matched generation of coherent extreme-ultraviolet light,” Nature421(6918), 51–54 (2003). [CrossRef] [PubMed]
  16. E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: model and experiment,” Phys. Rev. Lett.82(8), 1668–1671 (1999). [CrossRef]
  17. G. Marcus, W. Helml, X. Gu, Y. Deng, R. Hartmann, T. Kobayashi, L. Strueder, R. Kienberger, and F. Krausz, “Subfemtosecond K-Shell Excitation with a Few-Cycle Infrared Laser Field,” Phys. Rev. Lett.108(2), 023201 (2012). [CrossRef] [PubMed]
  18. Z. Q. Hao, J. Zhang, Y. T. Li, X. Lu, X. H. Yuan, Z. Y. Zheng, Z. H. Wang, W. J. Ling, and Z. Y. Wei, “Prolongation of the fluorescence lifetime of plasma channels in air induced by femtosecond laser pulses,” Appl. Phys. B80(4-5), 627–630 (2005). [CrossRef]
  19. B. Zhou, S. Akturk, B. Prade, Y. B. André, A. Houard, Y. Liu, M. Franco, C. D’Amico, E. Salmon, Z. Q. Hao, N. Lascoux, and A. Mysyrowicz, “Revival of femtosecond laser plasma filaments in air by a nanosecond laser,” Opt. Express17(14), 11450–11456 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited