OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19463–19473

Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser

Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, Piotr Paletko, Jakub Boguslawski, Ludwika Lipinska, and Krzysztof M. Abramski  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19463-19473 (2012)
http://dx.doi.org/10.1364/OE.20.019463


View Full Text Article

Enhanced HTML    Acrobat PDF (4900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work we demonstrate comprehensive studies on graphene oxide (GO) and reduced graphene oxide (rGO) based saturable absorbers (SA) for mode-locking of Er-doped fiber lasers. The paper describes the fabrication process of both saturable absorbers and detailed comparison of their parameters. Our results show, that there is no significant difference in the laser performance between the investigated SA. Both provided stable, mode-locked operation with sub-400 fs soliton pulses and more than 9 nm optical bandwidth at 1560 nm center wavelength. It has been shown that GO might be successfully used as an efficient SA without the need of its reduction to rGO. Taking into account simpler manufacturing technology and the possibility of mass production, GO seems to be a good candidate as a cost-effective material for saturable absorbers for Er-doped fiber lasers.

© 2012 OSA

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: July 6, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 3, 2012
Published: August 9, 2012

Citation
Grzegorz Sobon, Jaroslaw Sotor, Joanna Jagiello, Rafal Kozinski, Mariusz Zdrojek, Marcin Holdynski, Piotr Paletko, Jakub Boguslawski, Ludwika Lipinska, and Krzysztof M. Abramski, "Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser," Opt. Express 20, 19463-19473 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19463


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics2(4), 219–225 (2008). [CrossRef]
  2. N. Mamalis, “Femtosecond laser: the future of cataract surgery?” J. Cataract Refract. Surg.37(7), 1177–1178 (2011). [CrossRef] [PubMed]
  3. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17(11), 9300–9313 (2009). [CrossRef] [PubMed]
  4. S. Tang, J. Liu, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Developing compact multiphoton systems using femtosecond fiber lasers,” J. Biomed. Opt.14(3), 030508 (2009). [CrossRef] [PubMed]
  5. D. Stehr, C. M. Morris, C. Schmidt, and M. S. Sherwin, “High-performance fiber-laser-based terahertz spectrometer,” Opt. Lett.35(22), 3799–3801 (2010). [CrossRef] [PubMed]
  6. Q. L. Bao, H. Zhang, Y. Wang, Z. H. Ni, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser,” Adv. Funct. Mater.19(19), 3077–3083 (2009). [CrossRef]
  7. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube–Polymer Composites for Ultrafast Photonics,” Adv. Mater. (Deerfield Beach Fla.)21(38–39), 3874–3899 (2009). [CrossRef]
  8. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express17(20), 17630–17635 (2009). [CrossRef] [PubMed]
  9. H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, K. P. Loh, B. Lin, and S. C. Tjin, “Compact graphene mode-locked wavelength-tunable erbium-doped fiber lasers: from all anomalous dispersion to all normal dispersion,” Laser Phys. Lett.7(8), 591–596 (2010). [CrossRef]
  10. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Appl. Phys. Lett.96(11), 111112 (2010). [CrossRef]
  11. P. L. Huang, S. C. Lin, C. Y. Yeh, H. H. Kuo, S. H. Huang, G. R. Lin, L. J. Li, C. Y. Su, and W. H. Cheng, “Stable mode-locked fiber laser based on CVD fabricated graphene saturable absorber,” Opt. Express20(3), 2460–2465 (2012). [CrossRef] [PubMed]
  12. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express18(22), 23054–23061 (2010). [CrossRef] [PubMed]
  13. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200 fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett.97(20), 203106 (2010). [CrossRef]
  14. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  15. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. J. R. Kelleher, J. C. Travers, V. Nicolosi, and A. C. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010). [CrossRef]
  16. A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett.99(12), 121107 (2011). [CrossRef]
  17. Y. M. Chang, H. Kim, J. H. Lee, and Y. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers,” Appl. Phys. Lett.97(21), 211102 (2010). [CrossRef]
  18. J. Sotor, G. Sobon, and K. M. Abramski, “Scalar soliton generation in all-polarization-maintaining, graphene mode-locked fiber laser,” Opt. Lett.37(11), 2166–2168 (2012). [CrossRef] [PubMed]
  19. X. He, Z. Liu, D. Wang, M. Yang, C. R. Liao, and X. Zhao, “Passively Mode-Locked Fiber Laser Based on Reduced Graphene Oxide on Microfiber for Ultra-Wide-Band Doublet Pulse Generation,” J. Lightwave Technol.30(7), 984–989 (2012). [CrossRef]
  20. Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010). [CrossRef]
  21. L. Gui, W. Zhang, X. Li, X. Xiao, H. Zhu, K. Wang, D. Wu, and C. Yang, “Self-Assembled Graphene Membrane as an Ultrafast Mode-Locker in an Erbium Fiber Laser,” IEEE Photon. Technol. Lett.23(23), 1790–1792 (2011). [CrossRef]
  22. H. Zhang, Q. Bao, D. Tang, L. Zhao, and K. Loh, “Large energy soliton erbium-doped fiber laser with a graphene-polymer composite mode locker,” Appl. Phys. Lett.95(14), 141103 (2009). [CrossRef]
  23. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  24. X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution-processable few-layered graphene oxide,” Appl. Phys. Lett.98(12), 121905 (2011). [CrossRef]
  25. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  26. Z. B. Liu, X. Y. He, and D. N. Wang, “Passively mode-locked fiber laser based on a hollow-core photonic crystal fiber filled with few-layered graphene oxide solution,” Opt. Lett.36(16), 3024–3026 (2011). [CrossRef] [PubMed]
  27. J. Xu, J. Liu, S. Wu, Q. H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012). [CrossRef] [PubMed]
  28. W. S. Hummers and R. E. Offeman, “Preparation of Graphitic Oxide,” J. Am. Chem. Soc.80(6), 1339 (1958). [CrossRef]
  29. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000). [CrossRef]
  30. H. Tien, Y. Huang, S. Yang, J. Wang, and C. M. Ma, “The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films,” Carbon49(5), 1550–1560 (2011). [CrossRef]
  31. H. Shin, K. Kim, A. Benayad, S. Yoon, H. Park, I. Jung, M. Jin, H. Jeong, J. Kim, J. Choi, and Y. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance,” Adv. Funct. Mater.19(12), 1987–1992 (2009). [CrossRef]
  32. Y. Liu, X. Xie, and X.-Y. Ye, “High-concentration organic solutions of poly(styrene-cobutadiene-co-styrene)-modified graphene sheets exfoliated from graphite,” Carbon49(11), 3529–3537 (2011). [CrossRef]
  33. Y. Guo, X. Sun, Y. Liu, W. Wang, H. Qiu, and J. Gao, “One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation,” Carbon50(7), 2513–2523 (2012). [CrossRef]
  34. A. Jorio, M. Dresselhaus, R. Saito, and G. F. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley-VCH, 2011).
  35. O. Akhavan and E. Ghaderia, “Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner,” Carbon50(5), 1853–1860 (2012). [CrossRef]
  36. S. Pei and H. Cheng, “The reduction of graphene oxide,” Carbon50(9), 3210–3228 (2012). [CrossRef]
  37. C. Chen, Q. Yang, Y. Yang, W. Lv, Y. Wen, P. Hou, M. Wang, and H. Cheng, “Self-Assembled Free-Standing Graphite Oxide Membrane,” Adv. Mater. (Deerfield Beach Fla.)21(29), 3007–3011 (2009). [CrossRef]
  38. L. Zhang, Y. G. Wang, H. J. Yu, S. B. Zhang, W. Hou, X. C. Lin, and J. M. Li, “High Power Passively Mode-Locked Nd:YVO4 Laser Using Graphene Oxide as a Saturable Absorber,” Laser Phys.21(12), 2072–2075 (2011). [CrossRef]
  39. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, 2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited