OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19474–19483

Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source

Pavel N. Melentiev, Tatyana V. Konstantinova, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin, and Victor I. Balykin  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19474-19483 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We are first to demonstrate a broadband, nanometer-scale, and background-free light source that is based on photoluminescence of a single nanohole in an Au film. We show that a nanohole with a diameter of as small as 20 nm in a 200-nm thick Au film can be used for this purpose. Further development of the localized source that involves the use of a photon-crystal microcavity with a Q-factor of 100 makes it possible to create a 30-fold enhanced, narrowband tunable light source and with a narrow directivity of the radiation.

© 2012 OSA

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(130.0250) Integrated optics : Optoelectronics
(230.6080) Optical devices : Sources
(310.4165) Thin films : Multilayer design
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Thin Films

Original Manuscript: June 11, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 16, 2012
Published: August 10, 2012

Pavel N. Melentiev, Tatyana V. Konstantinova, Anton E. Afanasiev, Artur A. Kuzin, Andrey S. Baturin, and Victor I. Balykin, "Single nanohole and photoluminescence: nanolocalized and wavelength tunable light source," Opt. Express 20, 19474-19483 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer Verlag, 1995).
  2. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett.22(5), 185–187 (1969). [CrossRef]
  3. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986). [CrossRef] [PubMed]
  4. R. Lässer, N. V. Smith, and R. L. Benbow, “Empirical band calculations of the optical properties of d-band metals.I. Cu, Ag, and Au,” Phys. Rev. B24(4), 1895–1909 (1981). [CrossRef]
  5. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003). [CrossRef]
  6. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B70(20), 205424 (2004). [CrossRef]
  7. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett.317(6), 517–523 (2000). [CrossRef]
  8. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett.95(26), 267405 (2005). [CrossRef] [PubMed]
  9. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  10. F. J. Garcia de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79(4), 1267–1290 (2007). [CrossRef]
  11. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “How long does it take to melt a gold nanorod?” Chem. Phys. Lett.315(1-2), 12–18 (1999). [CrossRef]
  12. T.V. Konstantinova, P. N. Melentiev, A. E. Afanasiev, V. I. Balykin, A. A. Kuzin, P. A. Starikov, A. S. Baturin, A. A. Tauseynov, and A.V. Konyaschenko are preparing a manuscript to be called “Single nano-hole as an effective nonlinear element for third harmonic generation”.
  13. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press: Cambrodge 2006).
  14. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3(1), 55–58 (2009). [CrossRef]
  15. P. N. Melentiev, A. V. Zablotskiy, D. A. Lapshin, E. P. Sheshin, A. S. Baturin, and V. I. Balykin, “Nanolithography based on an atom pinhole camera,” Nanotechnology20(23), 235301 (2009). [CrossRef] [PubMed]
  16. R. B. Nielsen, I. Fernandez-Cuesta, A. Boltasseva, V. S. Volkov, S. I. Bozhevolnyi, A. Klukowska, and A. Kristensen, “Channel plasmon polariton waveguides fabricated by combined UV and nanoimprint lithography,” Opt. Lett.33, 2800–2802 (2008). [CrossRef] [PubMed]
  17. A. Gaiduk, M. Yorulmaz, and M. Orrit, “Correlated absorption and photoluminescence of single gold nanoparticles,” ChemPhysChem12(8), 1536–1541 (2011). [CrossRef] [PubMed]
  18. O. P. Varnavski, T. Goodson, M. B. Mohamed, and M. A. El-Sayed, “Femtosecond excitation dynamics in gold nanospheres and nanorods,” Phys. Rev. B72(23), 235405 (2005). [CrossRef]
  19. P. N. Melentiev, A. E. Afanasiev, A. A. Kuzin, A. V. Zablotskiy, A. S. Baturin, and V. I. Balykin, “Single nanohole and photonic crystal: wavelength selective enhanced transmission of light,” Opt. Express19(23), 22743–22754 (2011). [CrossRef] [PubMed]
  20. J. Dowling, M. Scully, and F. DeMartini, “Radiation-pattern of a classical dipole in a cavity,” Opt. Commun.82(5-6), 415–419 (1991). [CrossRef]
  21. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett.5(6), 1139–1142 (2005). [CrossRef] [PubMed]
  22. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007). [CrossRef] [PubMed]
  23. S. Palomba and L. Novotny, “Near-field imaging with a localized nonlinear light source,” Nano Lett.9(11), 3801–3804 (2009). [CrossRef] [PubMed]
  24. A. Weber-Bargioni, A. Schwartzberg, M. Cornaglia, A. Ismach, J. J. Urban, Y. Pang, R. Gordon, J. Bokor, M. B. Salmeron, D. F. Ogletree, P. Ashby, S. Cabrini, and P. J. Schuck, “Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes,” Nano Lett.11(3), 1201–1207 (2011). [CrossRef] [PubMed]
  25. G. Adamo, K. F. MacDonald, Y. H. Fu, C.-M. Wang, D. P. Tsai, F. J. de Abajo, and N. I. Zheludev, “Light well: a tunable free-electron light source on a chip,” Phys. Rev. Lett.103(11), 113901 (2009). [CrossRef] [PubMed]
  26. F. J. García de Abajo, “Optical excitations in electron microscopy,” Rev. Mod. Phys.82(1), 209–275 (2010). [CrossRef]
  27. S. Berweger, J. M. Atkin, X. G. Xu, R. L. Olmon, and M. B. Raschke, “Femtosecond nanofocusing with full optical waveform control,” Nano Lett.11(10), 4309–4313 (2011). [CrossRef] [PubMed]
  28. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012). [CrossRef] [PubMed]
  29. X. Ni, S. Ishii, M. D. Thoreson, V. M. Shalaev, S. Han, S. Lee, and A. V. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt. Express19(25), 25242–25254 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited