OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19511–19519

Wide spectral bandwidth electro-absorption modulator using coupled micro-cavity with asymmetric tandem quantum well

Byung Hoon Na, Gun Wu Ju, Hee Ju Choi, Yong Chul Cho, Yong Hwa Park, Chang Young Park, and Yong Tak Lee  »View Author Affiliations


Optics Express, Vol. 20, Issue 17, pp. 19511-19519 (2012)
http://dx.doi.org/10.1364/OE.20.019511


View Full Text Article

Enhanced HTML    Acrobat PDF (3278 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For reliable three dimensional (3D) imaging system, it is necessary for the optical shutter to have a wide spectral bandwidth operation and enhanced modulation depth. We propose an electro-absorption modulator (EAM) based on coupled Fabry-Perot cavities with micro-cavity (CCMC) which uses asymmetric tandem quantum wells (ATQWs) to obtain improved spectral bandwidth and enhanced modulation depth. Several modulator designs are investigated to obtain improved modulation performance such as wider spectral bandwidth and enhanced modulation depth. It was found that among all the studied modulator geometries, CCMC structure with ATQWs provides the widest spectral bandwidth of 9.6nm and high modulation depth in excess of 50% at −24V, which is good agreement with theoretical calculations. These results suggest that EAM has excellent potential as optical shutter for 3D imaging application.

© 2012 OSA

OCIS Codes
(100.6890) Image processing : Three-dimensional image processing
(230.2090) Optical devices : Electro-optical devices
(230.4110) Optical devices : Modulators
(230.4205) Optical devices : Multiple quantum well (MQW) modulators

ToC Category:
Optical Devices

History
Original Manuscript: June 12, 2012
Revised Manuscript: July 20, 2012
Manuscript Accepted: August 6, 2012
Published: August 10, 2012

Citation
Byung Hoon Na, Gun Wu Ju, Hee Ju Choi, Yong Chul Cho, Yong Hwa Park, Chang Young Park, and Yong Tak Lee, "Wide spectral bandwidth electro-absorption modulator using coupled micro-cavity with asymmetric tandem quantum well," Opt. Express 20, 19511-19519 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-17-19511


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: the quantum confined Stark effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984). [CrossRef]
  2. H. Liu, C. C. Lin, and J. S. Harris, “High-speed, dual-function vertical cavity multiple quantum well modulators and photodetectors for optical interconnects,” Opt. Eng.40(7), 1186–1191 (2001). [CrossRef]
  3. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, M. Stell, R. Mahon, P. G. Goetz, E. Oh, J. A. Vasquez, K. C. R. L. Lucke, and S. Mozersky, “Progress in development of multiple-quantum-well retromodulators for free-space data links,” Opt. Eng.42(6), 1611–1617 (2003). [CrossRef]
  4. W. S. Rabinovich, P. G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, J. H. Ray Burris, C. I. Moore, M. Suite, G. C. Gilbreath, S. Binari, and D. Klotzkin, “45-Mbit/s cat’s-eye modulating retroreflectors,” Opt. Eng.46(10), 104001 (2007). [CrossRef]
  5. Y. Yu, S. Karlsson, C. P. Liu, R. Schatz, U. Westergren, O. Kjebon, C. H. Chuang, S. L. He, L. Thylen, A. B. Krysa, J. S. Roberts, and A. J. Seeds, “Enhanced linear dynamic range of asymmetric Fabry–Perot modulator/detector,” IEEE Photon. Technol. Lett.18(6), 770–772 (2006). [CrossRef]
  6. T. L. Worchesky, K. J. Ritter, R. Martin, and B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt.35(8), 1180–1186 (1996). [CrossRef] [PubMed]
  7. S. Junique, Q. Wang, S. Almqvist, J. Guo, H. Martijn, B. Noharet, and J. Y. Andersson, “GaAs-based multiple-quantum-well spatial light modulators fabricated by a wafer-scale process,” Appl. Opt.44(9), 1635–1641 (2005). [CrossRef] [PubMed]
  8. J. S. Ahearn, M. H. Weiler, S. B. Adams, T. P. McElwain, A. Stark, L. DePaulis, A. L. Sarafinas, T. Hongsmatip, R. J. Martin, and B. Lane, “Multiple quantum well (MQW) spatial light modulators (SLMs) for optical data processing and beam steering,” Proc. SPIE4457, 43–53 (2001). [CrossRef]
  9. U. Arad, E. Redmard, M. Shamay, A. Averboukh, S. Levit, and U. Efron, “Development of a large high performance 2-D array of GaAs/AlGaAs multiple quantum-well modulators,” IEEE Photon. Technol. Lett.15(11), 1531–1533 (2003). [CrossRef]
  10. B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, and Y. T. Lee, “Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation,” Opt. Express20(6), 6003–6009 (2012). [CrossRef] [PubMed]
  11. Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012). [CrossRef]
  12. S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities,” Opt. Express16(1), 231–236 (2008). [CrossRef] [PubMed]
  13. A. A. M. Saleh and J. Stone, “Two stage Fabry-Perot filters as de-multiplexers in optical FDMA LAN’s,” J. Lightwave Technol.7(2), 323–330 (1989). [CrossRef]
  14. E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009). [CrossRef]
  15. E. A. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “Switchable polarization-independent liquid-crystal Fabry-Perot filter,” Appl. Opt.48(1), 74–79 (2009). [CrossRef] [PubMed]
  16. I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991). [CrossRef]
  17. K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electroabsorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994). [CrossRef]
  18. H. Mohseni, W. K. Chan, H. An, A. Ulmer, and D. Capewell, “Tunable surface-normal modulator operating near 1550nm with a high-extinction ratio at high temperature,” IEEE Photon. Technol. Lett.18(1), 214–216 (2006). [CrossRef]
  19. N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005). [CrossRef]
  20. T. H. Stievater, W. S. Rabinovich, P. G. Goetz, R. Mahon, and S. C. Binari, “A surface-normal coupled-quantum-well modulator at 1.55 µm,” IEEE Photon. Technol. Lett.16(9), 2036–2038 (2004). [CrossRef]
  21. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, “23 GHz Ge/SiGe multiple quantum well electroabsorption modulator,” Opt. Express20(3), 3219–3224 (2012). [CrossRef] [PubMed]
  22. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984). [CrossRef]
  23. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Pearson Prentice Hall, New Jersey, 2007), Chap. 22.
  24. N. Susa and T. Nakahara, “Design of AlGaAs/GaAs quantum well for electro-absorption modulator,” Solid-State Electron.36(9), 1277–1287 (1993). [CrossRef]
  25. K. Bacher, B. Pezeshki, S. M. Lord, and J. S. Harris, “Molecular beam epitaxy growth of vertical cavity optical devices with in situ corrections,” Appl. Phys. Lett.61(12), 1387–1389 (1992). [CrossRef]
  26. Z. Zhou, Y. Dou, Y. Huang, R. Wu, and X. Ren, “Accurately nonselective and selective etching of GaAs/Al0.8Ga0.2As/AlAs structure for making air-gap cavity,” Proc. SPIE5280, 889–895 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited