OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19535–19544

A hybrid fiber-optic photoluminescence measurement system and its application in InGaN/GaN light emitting diode epi-wafer morphology studies

Sohee An, Yong Gon Seo, Woohyun Jung, Minkyu Park, Jiyoung Park, Jongki Kim, Yoonseob Jeong, and Kyunghwan Oh  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19535-19544 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a fiber optic photoluminescence (PL) measurement system using a novel hybrid probe composed of a series of single mode fiber (SMF) and double-clad fiber (DCF) terminated with a coreless silica fiber (CSF) segment and glass micro-lens formed on its cleaved-facet. The fiber probe provided a good guidance and focusing capability for the excitation photon with a focal length of 125 μm and a beam diameter of 13.6 μm. Utilizing a special DCF-to-DCF coupling scheme, the photoluminescence signals were efficiently collected and delivered to a photodetector with a low loss. Utilizing the proposed system, PL morphology was investigated over a 200 × 200 μm2 area for two types of InGaN/GaN blue light emitting diode (LED) epi-wafers grown on 1) an un-patterned sapphire substrate (UPSS), and 2) a patterned sapphire substrate (PSS). The uniformity in the relative PL intensity and the spectral uniformity in terms of the peak PL wavelength were experimentally compared and analyzed.

© 2012 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3670) Optical devices : Light-emitting diodes
(250.5230) Optoelectronics : Photoluminescence
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Optical Devices

Original Manuscript: May 3, 2012
Revised Manuscript: July 25, 2012
Manuscript Accepted: July 25, 2012
Published: August 10, 2012

Sohee An, Yong Gon Seo, Woohyun Jung, Minkyu Park, Jiyoung Park, Jongki Kim, Yoonseob Jeong, and Kyunghwan Oh, "A hybrid fiber-optic photoluminescence measurement system and its application in InGaN/GaN light emitting diode epi-wafer morphology studies," Opt. Express 20, 19535-19544 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Wilson and J. F. B. Hawkes, Optoelectronics: An introduction (Prentice Hall, 1983).
  2. K. P. O’Donnell, M. J. Tobin, S. C. Bayliss, and W. Van Der Stricht, “Confocal microscopy and spectroscopy of InGaN epilayers on sapphire,” J. Microsc.193(2), 105–108 (1999). [CrossRef]
  3. K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi, M. Terazima, and T. Mukai, “Confocal microphotoluminescence of InGaN-based light-emitting diodes,” J. Appl. Phys.98(6), 064503 (2005). [CrossRef]
  4. R. Jayakrishan, T. Sebastian, C. S. Kartha, and K. P. Vijayakumar, “Room Temperature Photoluminescence Surface Mapping,” J. Phys.: Conf. Ser.28, 62–65 (2006). [CrossRef]
  5. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K. T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express15(26), 17681–17689 (2007). [CrossRef] [PubMed]
  6. R. Micheletto, N. Yoshimatsu, A. Kaneta, Y. Kawakami, and S. Fujita, “Indium concentration influence on PL spatial inhomogeneity in InGaN single quantum well structures detected by original low-cost near-field probes,” Appl. Surf. Sci.229(1–4), 338–345 (2004). [CrossRef]
  7. C. Li, M. Gao, C. Ding, X. Zhang, L. Zhang, Q. Chen, and L.-M. Peng, “In situ comprehensive characterization of optoelectronic nanomaterials for device purposes,” Nanotechnology20(17), 175703 (2009). [CrossRef] [PubMed]
  8. S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Heidelberg, 1997).
  9. T. Wang, T. Shirahama, H. B. Sun, H. X. Wang, J. Bai, S. Sakai, and H. Misawa, “Influence of buffer layer and growth temperature on the properties of an undoped GaN layer grown on sapphire substrate by metalorganic chemical vapor deposition,” Appl. Phys. Lett.76(16), 2220–2222 (2000). [CrossRef]
  10. T. Mukai, K. Takekawa, and S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates,” Jpn. J. Appl. Phys.37(Part 2, No. 7B), L839–L841 (1998). [CrossRef]
  11. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys.40(Part 2, No. 6B), L583–L585 (2001). [CrossRef]
  12. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys.41(Part 2, No. 12B), L1431–L1433 (2002). [CrossRef]
  13. D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett.17(2), 288–290 (2005). [CrossRef]
  14. L. Zenteno, “High-power double-clad fiber lasers,” J. Lightwave Technol.11(9), 1435–1446 (1993). [CrossRef]
  15. E. G. Neumann, Single Mode Fibers (Springer-Verlag 1988), Chap 6.
  16. F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett.17(10), 423–425 (1970). [CrossRef]
  17. K. R. Kim and K. Oh, “All fiber spot-size transformer for efficient free-space optical interconnecting devices,” Appl. Opt.42, 6261–6266 (2003). [CrossRef] [PubMed]
  18. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt.47(10), 1510–1516 (2008). [CrossRef] [PubMed]
  19. S. Lemire-Renaud, M. Rivard, M. Strupler, D. Morneau, F. Verpillat, X. Daxhelet, N. Godbout, and C. Boudoux, “Double-clad fiber coupler for endoscopy,” Opt. Express18(10), 9755–9764 (2010). [CrossRef] [PubMed]
  20. S. Y. Ryu, H. Y. Choi, J. Na, E. S. Choi, and B. H. Lee, “Combined system of optical coherence tomography and fluorescence spectroscopy based on double-cladding fiber,” Opt. Lett.33(20), 2347–2349 (2008). [CrossRef] [PubMed]
  21. B. H. Lee, J. B. Eom, K. S. Park, S. J. Park, and M. J. Ju, “Specialty fiber coupler: fabrications and applications,” J. Opt. Soc. Korea14(4), 326–332 (2010). [CrossRef]
  22. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall 1983) pp. 27–29.
  23. J. Bures, S. Lacroix, and J. Lapierre, “Analyse d’un coupleur bidirectionnel a fibres optiques monomodes fusionnees,” Appl. Opt.22(12), 1918–1922 (1983). [CrossRef] [PubMed]
  24. M. Koike, N. Shibata, H. Kato, and Y. Takahashi, “Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications,” IEEE J. Sel. Top. Quantum Electron.8(2), 271–277 (2002). [CrossRef]
  25. F. K. Yam and Z. Hassan, “Innovative advances in LED technology,” Microelectron. J.36(2), 129–137 (2005). [CrossRef]
  26. Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,” J. Cryst. Growth272(1-4), 327–332 (2004). [CrossRef]
  27. J.-H. Chen, Z.-C. Feng, H.-L. Tsai, J.-R. Yang, P. Li, C. Wetzel, T. Detchprohm, and J. Nelson, “Optical and structural properties of InGaN/GaN multiple quantum well structure grown by metalorganic chemical vapor deposition,” Thin Solid Films498(1-2), 123–127 (2006). [CrossRef]
  28. S. J. Leem, Y. C. Shin, E. H. Kim, C. M. Kim, B. G. Lee, Y. Moon, I. H. Lee, and T. G. Kim, “Optimization of InGaN/GaN multiple quantum well layers by a two-step varied-barrier-growth temperature method,” Semicond. Sci. Technol.23(12), 125039 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited