OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 17 — Aug. 13, 2012
  • pp: 19545–19553

Coupling of ultrathin tapered fibers with high-Q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling

Masazumi Fujiwara, Tetsuya Noda, Akira Tanaka, Kiyota Toubaru, Hong-Quan Zhao, and Shigeki Takeuchi  »View Author Affiliations

Optics Express, Vol. 20, Issue 17, pp. 19545-19553 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We cooled ultrathin tapered fibers to cryogenic temperatures and controllably coupled them with high-Q microsphere resonators at a wavelength close to the optical transition of diamond nitrogen vacancy centers. The 310-nm-diameter tapered fibers were stably nanopositioned close to the microspheres with a positioning stability of approximately 10 nm over a temperature range of 7–28 K. A cavity-induced phase shift was observed in this temperature range, demonstrating a discrete transition from undercoupling to overcoupling.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(350.3950) Other areas of optics : Micro-optics
(140.3945) Lasers and laser optics : Microcavities
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Quantum Optics

Original Manuscript: May 29, 2012
Revised Manuscript: July 23, 2012
Manuscript Accepted: August 3, 2012
Published: August 10, 2012

Masazumi Fujiwara, Tetsuya Noda, Akira Tanaka, Kiyota Toubaru, Hong-Quan Zhao, and Shigeki Takeuchi, "Coupling of ultrathin tapered fibers with high-Q microsphere resonators at cryogenic temperatures and observation of phase-shift transition from undercoupling to overcoupling," Opt. Express 20, 19545-19553 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Benson, “Assembly of hybrid photonic architectures from nanophotonic constituents,” Nature (London)480, 193–199 (2011). [CrossRef]
  2. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett.10, 3922–3926 (2010). [CrossRef] [PubMed]
  3. Y. Park, A. Cook, and H. Wang, “Cavity qed with diamond nanocrystals and silica microspheres,” Nano Lett.6, 2075–2079 (2006). [CrossRef] [PubMed]
  4. O. Arcizet, V. Jacques, A. Siria, P. Poncharal, P. Vincent, and S. Seidelin, “A single nitrogen-vacancy defect coupled to a nanomechanical oscillator,” Nat. Physics7, 879–883 (2011). [CrossRef]
  5. P. E. Barclay, C. Santori, K.-M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express17, 8081–8097 (2009). [CrossRef] [PubMed]
  6. C. Santori, P. Barclay, K. Fu, R. Beausoleil, S. Spillane, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology21, 274008 (2010). [CrossRef] [PubMed]
  7. A. Faraon, P.E. Barclay, C. Santori, K.M.C. Fu, and R.G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics5, 301–305 (2011). [CrossRef]
  8. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” arXiv:1202.0806v1 (2012).
  9. Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, “Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering,” Phys. Rev. A84, 011805 (2011). [CrossRef]
  10. Y. F. Xiao, C. L. Zou, P. Xue, L. Xiao, Y. Li, C. H. Dong, Z. F. Han, and Q. Gong, “Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer,” Phys. Rev. A81, 053807 (2010). [CrossRef]
  11. K. Kojima, H. Hofmann, S. Takeuchi, and K. Sasaki, “Nonlinear interaction of two photons with a one-dimensional atom: Spatiotemporal quantum coherence in the emitted field,” Phys. Rev. A68, 013803 (2003). [CrossRef]
  12. K. Kojima, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Efficiencies for the single-mode operation of a quantum optical nonlinear shift gate,” Phys. Rev. A70, 013810 (2004). [CrossRef]
  13. K. Koshino, S. Ishizaka, and Y. Nakamura, “Deterministic photon-photon SWAP gate using a λ system,” Phys. Rev. A82, 010301 (2010). [CrossRef]
  14. M. Wallquist, K. Hammerer, P. Rabl, M. Lukin, and P. Zoller, “Hybrid quantum devices and quantum engineering,” Physica ScriptaT137, 014001 (2009). [CrossRef]
  15. S. Spillane, T. Kippenberg, and K. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature (London)415, 621–623 (2002). [CrossRef]
  16. T. Aoki, B. Dayan, E. Wilcut, W. Bowen, A. Parkins, T. Kippenberg, K. Vahala, and H. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature (London)443, 671–674 (2006). [CrossRef]
  17. M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett.9, 1447–1450 (2009). [CrossRef] [PubMed]
  18. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Physics4, 415–419 (2008). [CrossRef]
  19. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the heisenberg uncertainty limit,” Nat. Physics5, 509–514 (2009). [CrossRef]
  20. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T.J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London)482, 63–67 (2012). [CrossRef]
  21. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett.86, 261106 (2005). [CrossRef]
  22. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a sub-micrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90, 101103 (2007). [CrossRef]
  23. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Control of spontaneous emission coupling factor β in fiber-coupled microsphere resonators,” Appl. Phys. Lett.92, 071115 (2008). [CrossRef]
  24. H. Takashima, T. Asai, K. Toubaru, M. Fujiwara, K. Sasaki, and S. Takeuchi, “Fiber-microsphere system at cryogenic temperatures toward cavity qed using diamond nv centers,” Opt. Express18, 15169–15173 (2010). [CrossRef] [PubMed]
  25. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett.25, 260–262 (2000). [CrossRef]
  26. M. Pototschnig, Y. Chassagneux, J. Hwang, G. Zumofen, A. Renn, and V. Sandoghdar, “Controlling the phase of a light beam with a single molecule,” Phys. Rev. Lett.107, 63001 (2011). [CrossRef]
  27. A. Tanaka, T. Asai, K. Toubaru, H. Takashima, M. Fujiwara, R. Okamoto, and S. Takeuchi, “Phase shift spectra of a fiber-microsphere system at the single photon level,” Opt. Express19, 2278–2285 (2011). [CrossRef] [PubMed]
  28. M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000). [CrossRef] [PubMed]
  29. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko“Ultimate Q of optical microsphere resonators,” Opt. Lett.21, 453–455 (1996). [CrossRef] [PubMed]
  30. A.H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, and O. Painter, “Observation of quantum motion of a nanomechanical resonator,” Phys. Rev. Lett.108, 033602 (2012). [CrossRef] [PubMed]
  31. M. Fujiwara, K. Toubaru, T. Noda, H. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11, 4362–4365 (2011). [CrossRef] [PubMed]
  32. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19, 8596–8601 (2011). [CrossRef] [PubMed]
  33. The overall transmittance of the tapered fibers (including the fiber coupling loss, the fiber connection loss, and the scattering loss at the UV adhesive) was 0.13 at room temperature. It decreased to 0.03 at 7 K, probably due to temperature-induced deformation of the UV adhesive. This reduction in transmittance does not essentially affect the present fiber–microsphere coupling experiment.
  34. Note that the microspheres fabricated from the silica fibers (S630-HP, Thorlabs) usually show Q factor of ∼ 107 due to impurities doped in the silica fibers. By using high-purity and low-OH silica for the starting material, we confirmed that the microspheres have Q factor of greater than 108. Note also that the cryogenic experiments do not affect the Q-factor of the microsphere as we already experimentally confirmed previously [24].
  35. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89, 121107 (2006). [CrossRef]
  36. K. Totsuka and M. Tomita, “Slow and fast light in a microsphere-optical fiber system,” J. Opt. Soc. Am. B23, 2194–2199 (2006). [CrossRef]
  37. The taper-microsphere distance was calibrated by the data of room-temperature coupling experiments using a 330-nm-diameter tapered fiber and a 125-μm-diameter microsphere with the quality factor of Q = 1.0 × 107.
  38. Equation (3) in Ref. [27] reads Δϕ = arctan(S3/S2) − argAX + argAY, where AX and AY are a orthogonal set of complex amplitudes of the input electric field. In the present experiment we input diagonal polarization light, which gives argAX = argAY = 1/2.
  39. B. Little, J. Laine, and H. Haus, “Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators,” J. Lightw. Technol.17, 704–715 (1999). [CrossRef]
  40. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Resonant frequency control of a microspherical cavity by temperature adjustment,” Jpn. J. Appl. Phys.43, 6138–6141 (2004). [CrossRef]
  41. O. Arcizet, R. Riviére, A. Schliesser, G. Antetsberger, and T. J. Kippenberg, “Cryogenic Properties of Optomechanical Silica Microcavities,” Phys. Rev. A80, 021803 (2009). [CrossRef]
  42. Y. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett.32, 3104–3106 (2007). [CrossRef] [PubMed]
  43. G. K. White, “Thermal expansion of vitreous silica at low temperatures,” Phys. Rev. Lett.34, 204–205 (1975). [CrossRef]
  44. G. K. White, “Thermal expansion of reference materials: copper, silica and silicon,” J. Phys. D: Appl. Phys.6, 2070–2078 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited