OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19635–19642

Sputtered ZnO–SiO2 nanocomposite light-emitting diodes with flat-top nanosecond laser treatment

Jiun-Ting Chen, Wei-Chih Lai, Chi-Heng Chen, Ya-Yu Yang, Jinn-Kong Sheu, Kun-Wei Lin, and Li-Wen Lai  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19635-19642 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Sputtered ZnO–SiO2 nanocomposite light-emitting diodes (LEDs) were treated using a flat-top nanosecond laser (FTNL) under room temperature. The intensity of the 376 nm electroluminescence (EL) emission of ZnO–SiO2 nanocomposite LEDs at a current of 9 mA with FTNL treatment was approximately 1.4 times greater than LEDs without FTNL treatment. Furthermore, the FTNL-treated LEDs indicated a narrower full width at half maximum of the 376 nm EL emission than those of LEDs without FTNL treatment. Thus, FTNL treatment of ZnO–SiO2 nanocomposite LEDs could induce the recrystallization of distributed ZnO nanoclusters and reduce the defects in ZnO–SiO2 nanocomposite layers.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Optical Devices

Original Manuscript: May 29, 2012
Revised Manuscript: August 6, 2012
Manuscript Accepted: August 9, 2012
Published: August 13, 2012

Jiun-Ting Chen, Wei-Chih Lai, Chi-Heng Chen, Ya-Yu Yang, Jinn-Kong Sheu, Kun-Wei Lin, and Li-Wen Lai, "Sputtered ZnO–SiO2 nanocomposite light-emitting diodes with flat-top nanosecond laser treatment," Opt. Express 20, 19635-19642 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005). [CrossRef]
  2. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, “High temperature excitonic stimulated emission from ZnO epitaxial layers,” Appl. Phys. Lett.73(8), 1038–1040 (1998). [CrossRef]
  3. L. Mädler, W. J. Stark, and S. E. Pratsinis, “Rapid synthesis of stable ZnO quantum dots,” J. Appl. Phys.92(11), 6537–6540 (2002). [CrossRef]
  4. Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, “Synthesis and optical. properties of tetrapod-like zinc oxide nanorods,” Chem. Phys. Lett.358(1-2), 83–86 (2002). [CrossRef]
  5. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science291(5510), 1947–1949 (2001). [CrossRef] [PubMed]
  6. S. Monticone, R. Tufeu, and A. V. Kanaev, “Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles,” J. Phys. Chem. B102(16), 2854–2862 (1998). [CrossRef]
  7. Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, and C. H. Liang, “Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties,” J. Cryst. Growth234(1), 171–175 (2002). [CrossRef]
  8. V. A. L. Roy, A. B. Djurišić, W. K. Chan, J. Gao, H. F. Lui, and C. Surya, “Luminescent and structural properties of ZnO nanorods prepared under different conditions,” Appl. Phys. Lett.83(1), 141–143 (2003). [CrossRef]
  9. V. Musat, E. Fortunato, S. Petrescu, and A. M. Botelho do Rego, “ZnO/SiO2 nanocomposite thin films by sol gel method,” Phys. Status Solidi., A Appl. Mater. Sci.205(8), 2075–2079 (2008). [CrossRef]
  10. G. Kiliani, R. Schneider, D. Litvinov, D. Gerthsen, M. Fonin, U. Rüdiger, A. Leitenstorfer, and R. Bratschitsch, “Ultraviolet photoluminescence of ZnO quantum dots sputtered at room-temperature,” Opt. Express19(2), 1641–1647 (2011). [CrossRef] [PubMed]
  11. M. K. Wu, Y. T. Shih, M. J. Chen, J. R. Yang, and M. Shiojiri, “ZnO quantum dots embedded in a SiO2 nanoparticle layer grown by atomic layer deposition,” Phys. Stat. Sol. 3(2-3), 88–90 (2009). [CrossRef]
  12. J. G. Ma, Y. C. Liu, C. S. Xu, Y. X. Liu, C. L. Shao, H. Y. Xu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, “Preparation and characterization of ZnO particles embedded in SiO2 matrix by reactive magnetron sputtering,” J. Appl. Phys.97(10), 103509 (2005). [CrossRef]
  13. M. J. Chen, Y. T. Shih, M. K. Wu, H. C. Chen, H. L. Tsai, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri, “Structure and ultraviolet electroluminescence of n-ZnO/SiO2-ZnO nanocomposite/p-GaN heterostructure light-emitting diodes,” IEEE Trans. Electron. Dev.57(9), 2195–2202 (2010). [CrossRef]
  14. Y. T. Shih, M. K. Wu, W. C. Li, H. Kuan, J. R. Yang, M. Shiojiri, and M. J. Chen, “Amplified spontaneous emission from ZnO in n-ZnO/ZnO nanodots-SiO2 composite/p-AlGaN heterojunction light-emitting diodes,” Nanotechnology20(16), 165201 (2009). [CrossRef] [PubMed]
  15. J. T. Chen, W. C. Lai, C. H. Chen, Y. Y. Yang, J. K. Sheu, and L. W. Lai, “Electroluminescence of ZnO nanocrystal in sputtered ZnO-SiO2 nanocomposite light-emitting devices,” Opt. Express19(12), 11873–11879 (2011). [CrossRef] [PubMed]
  16. H. Pan, S. H. Ko, N. Misra, and C. P. Grigoropoulos, “Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics,” Appl. Phys. Lett.94(7), 071117 (2009). [CrossRef]
  17. J. Ihlemann, “Patterning of oxide thin films by UV-laser ablation,” J. Optoelectron. Adv. Mater.7, 1191–1195 (2005).
  18. S. Sedky, M. Gromova, T. Van der Donck, J.-P. Celis, and A. Witvrouw, “Characterization of KrF excimer laser annealed PECVD SixGe1− x for MEMS post-processing,” Sens. Actuators A Phys.127(2), 316–323 (2006). [CrossRef]
  19. J. Y. Lee, J. H. Lee, H. Seung Kim, C.-H. Lee, H.-S. Ahn, H. K. Cho, Y. Y. Kim, B. H. Kong, and H. S. Lee, “A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED,” Thin Solid Films517(17), 5157–5160 (2009). [CrossRef]
  20. K. F. Lin, H. M. Cheng, H. C. Hsu, and W. F. Hsieh, “Band gap engineering and spatial confinement of optical phonon in ZnO quantum dots,” Appl. Phys. Lett.88(26), 263117 (2006). [CrossRef]
  21. A. G. Milekhin, N. A. Yeryukov, L. L. Sveshnikova, T. A. Duda, E. I. Zenkevich, S. S. Kosolobov, A. V. Latyshev, C. Himcinski, N. V. Surovtsev, S. V. Adichtchev, Z. C. Feng, C. C. Wu, D. S. Wuu, and D. R. T. Zahn, “Surface enhanced Raman scattering of light by ZnO nanostructures,” J. Exp. Theor. Phys.113(6), 983–991 (2011). [CrossRef]
  22. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, “Micro-Raman investigation of optical phonons in ZnO nanocrystals,” J. Appl. Phys.97(12), 124313 (2005). [CrossRef]
  23. H. M. Cheng, K. F. Lin, H. C. Hsu, and W. F. Hsieh, “Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots,” Appl. Phys. Lett.88(26), 261909 (2006). [CrossRef]
  24. C. F. Windisch, G. J. Exarhos, C. Yao, and L. Q. Wang, “Raman study of the influence of hydrogen on defects in ZnO,” J. Appl. Phys.101(12), 123711 (2007). [CrossRef]
  25. H. M. Cheng, H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin, and W. F. Hsieh, “Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol–gel method,” J. Cryst. Growth277(1-4), 192–199 (2005). [CrossRef]
  26. Y. Yang, H. Yan, Z. Fu, B. Yang, and J. Zuo, “Correlation between 577 cm−1 Raman scattering and green emission in ZnO ordered nanostructures,” Appl. Phys. Lett.88(19), 191909 (2006). [CrossRef]
  27. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett.68(3), 403–405 (1996). [CrossRef]
  28. D. C. Reynolds, D. C. Look, B. Jogai, and H. Morkoc, “Similarities in the bandedge and deep-centre photoluminescence mechanisms of ZnO and GaN,” Solid State Commun.101(9), 643–646 (1997). [CrossRef]
  29. C. M. Mo, Y. H. Li, Y. S. Liu, Y. Zhang, and L. D. Zhang, “Enhancement effect of photoluminescence in assemblies of nano-ZnO particles/silica aerogels,” J. Appl. Phys.83(8), 4389–4391 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited