OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19658–19669

Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer

Dinesh N. Naik, Takahiro Ezawa, Rakesh Kumar Singh, Yoko Miyamoto, and Mitsuo Takeda  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19658-19669 (2012)
http://dx.doi.org/10.1364/OE.20.019658


View Full Text Article

Enhanced HTML    Acrobat PDF (1820 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new technique for achromatic 3-D field correlation that makes use of the characteristics of both axial and lateral magnifications of imaging through a common-path Sagnac shearing interferometer. With this technique, we experimentally demonstrate, for the first time to our knowledge, 3-D image reconstruction of coherence holography with generic thermal light. By virtue of the achromatic axial shearing implemented by the difference in axial magnifications in imaging, the technique enables coherence holography to reconstruct a 3-D object with an axial depth beyond the short coherence length of the thermal light.

© 2012 OSA

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(090.0090) Holography : Holography
(100.3010) Image processing : Image reconstruction techniques

ToC Category:
Holography

History
Original Manuscript: June 6, 2012
Manuscript Accepted: July 24, 2012
Published: August 13, 2012

Citation
Dinesh N. Naik, Takahiro Ezawa, Rakesh Kumar Singh, Yoko Miyamoto, and Mitsuo Takeda, "Coherence holography by achromatic 3-D field correlation of generic thermal light with an imaging Sagnac shearing interferometer," Opt. Express 20, 19658-19669 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-19658


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express13(23), 9629–9635 (2005). [CrossRef] [PubMed]
  2. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “3-D coherence holography using a modified Sagnac radial shearing interferometer with geometric phase shift,” Opt. Express17(13), 10633–10641 (2009). [CrossRef] [PubMed]
  3. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “Phase-shift coherence holography,” Opt. Lett.35(10), 1728–1730 (2010). [CrossRef] [PubMed]
  4. D. N. Naik, T. Ezawa, Y. Miyamoto, and M. Takeda, “Real-time coherence holography,” Opt. Express18(13), 13782–13787 (2010). [CrossRef] [PubMed]
  5. W. Wang, H. Kozaki, J. Rosen, and M. Takeda, “Synthesis of longitudinal coherence functions by spatial modulation of an extended light source: a new interpretation and experimental verifications,” Appl. Opt.41(10), 1962–1971 (2002). [CrossRef] [PubMed]
  6. Z. Duan, Y. Miyamoto, and M. Takeda, “Dispersion-free optical coherence depth sensing with a spatial frequency comb generated by an angular spectrum modulator,” Opt. Express14(25), 12109–12121 (2006). [CrossRef] [PubMed]
  7. J. Rosen and M. Takeda, “Longitudinal spatial coherence applied for surface profilometry,” Appl. Opt.39(23), 4107–4111 (2000). [CrossRef] [PubMed]
  8. P. Pavliček, M. Halouzka, Z. Duan, and M. Takeda, “Spatial coherence profilometry on tilted surfaces,” Appl. Opt.48(34), H40–H47 (2009). [CrossRef] [PubMed]
  9. W. Wang, Z. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett.96(7), 073902 (2006). [CrossRef] [PubMed]
  10. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982). [CrossRef]
  11. M. V. R. K. Murty, “A compact radial shearing interferometer based on the law of refraction,” Appl. Opt.3(7), 853–857 (1964). [CrossRef]
  12. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970), Chap. 10.
  13. J. W. Goodman, Statistical Optics, 1st ed. (Wiley, New York, 1985), Chap. 5.
  14. P. Handel, “Properties of the IEEE-STD-1057 four-parameter sine wave fit algorithm,” IEEE Trans. Instrum. Meas.49(6), 1189–1193 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited