OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19670–19682

Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection

Di Zhang, Jianyi Zhao, Qi Yang, Wen Liu, Yanfeng Fu, Chao Li, Ming Luo, Shenglei Hu, Qianggao Hu, and Lei Wang  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19670-19682 (2012)
http://dx.doi.org/10.1364/OE.20.019670


View Full Text Article

Enhanced HTML    Acrobat PDF (1945 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(230.0230) Optical devices : Optical devices
(230.4685) Optical devices : Optical microelectromechanical devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 11, 2012
Revised Manuscript: July 16, 2012
Manuscript Accepted: July 16, 2012
Published: August 13, 2012

Citation
Di Zhang, Jianyi Zhao, Qi Yang, Wen Liu, Yanfeng Fu, Chao Li, Ming Luo, Shenglei Hu, Qianggao Hu, and Lei Wang, "Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection," Opt. Express 20, 19670-19682 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-19670


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Xia, G. A. Wellbrock, Y. K. Huang, M. F. Huang, E. Ip, P. N. Ji, D. Y. Qian, A. Tanaka, Y. Shao, T. Wang, Y. Aono, and T. Tajima, “21.7Tb/s field trial with 22 DP-8QAM/QPSK optical supperchannels over 1503-km of installed SSMF,” in Proceeding of Optical Fiber Communication Conference (Los Angeles, USA, 2012), paper PDP5D.6.
  2. O. Interconn. Forum, “Implementation agreement for integrated polarization multiplexed quadrature modulated transmitters,” in Proc. Opt. Internetw. Forum, (Mar. 2010), pp. 1–20. www.oiforum.com
  3. S. L. Zhang, M. F. Huang, F. Yaman, E. Maeto, D. Y. Qian, Y. Q. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6Gb/s PDM-16-QAM OFDM transmission over 10181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proceeding of Optical Fiber Communication Conference (Los Angeles, USA, 2012), paper PDP5C.4.
  4. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009). [CrossRef] [PubMed]
  5. R. Dischler and F. Buchali, “Transmission of 1.2 Tb/s Continuous Waveband PDM‐OFDM‐FDM Signal with Spectral Efficiency of 3.3 bit/s/Hz over 400 km of SSMF,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2012), paper PDP C2.
  6. S. Zhang, P. Y. Kam, C. Yu, and J. Chen, “Laser Linewidth Tolerance of Decision-Aided Maximum Likelihood Phase Estimation in Coherent Optical M-ary PSK and QAM Systems,” IEEE Photon. Technol. Lett.21(15), 1075–1077 (2009). [CrossRef]
  7. M. Seimetz, High-Order Modulation for Optical Fiber Transmission (Springer Series in Optical Sciences, 2009), Chap. 7.
  8. I. Fatadin and S. J. Savory, “Impact of phase to amplitude noise conversion in coherent optical systems with digital dispersion compensation,” Opt. Express18(15), 16273–16278 (2010). [CrossRef] [PubMed]
  9. C. Xie, “Local Oscillator Phase noise Induced Penalties in Optical Coherent Detection Systems Using Electronic Chromatics Dispersion Compensation,” in Proceeding of Optical Fiber Communication Conference (San Diego, USA, 2012), Paper OMT4.
  10. J. De Merlier, K. Mizutani, S. Sudo, K. Sato, and K. Kudo, “Wavelength channel accuracy of an external cavity wavelength tunable laser with intracavity wavelength reference etalon,” J. Lightwave Technol.24(8), 3202–3209 (2006). [CrossRef]
  11. K. Sato, K. Mizutani, S. Sudo, K. Tsuruoka, K. Naniwae, and K. Kudo, “Wideband external cavity wavelength-tunable laser utilizing a liquid-crystal-based mirror and an intracavity etalon,” J. Lightwave Technol.25(8), 2226–2232 (2007). [CrossRef]
  12. A. Q. Liu and X. M. Zhang, “A review of MEMS external-cavity tunable lasers,” J. Micromech. Microeng.17(1), R1–R13 (2007). [CrossRef]
  13. E. Ip, J. M. Kahn, D. Anthon, and J. Hutchins, “Linewidth measurements of MEMS-based tunable lasers for phase-locking applications,” IEEE Photon. Technol. Lett.17(10), 2029–2031 (2005). [CrossRef]
  14. X. M. Zhang, A. Q. Liu, C. Lu, and D. Y. Tang, “Continuous wavelength tuning in micromachined Littrow external-cavity lasers,” IEEE J. Quantum Electron.41(2), 187–197 (2005). [CrossRef]
  15. W. R. Trutna and L. F. Stokes, “Continuously tuned external cavity semiconductor laser,” J. Lightwave Technol.11(8), 1279–1286 (1993). [CrossRef]
  16. N. Kaneda, A. Leven, and Y.-K. Chen, “Block length effect on 5.0 Gbit/s real-time QPSK intradyne receivers with standard DFB lasers,” Electron. Lett.43(20), 1106–1107 (2007). [CrossRef]
  17. X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” J. Lightwave Technol.26(10), 1309–1316 (2008). [CrossRef]
  18. S. D. Saliba and R. E. Scholten, “Linewidths below 100 kHz with external cavity diode lasers,” Appl. Opt.48(36), 6961–6966 (2009). [CrossRef] [PubMed]
  19. W. Li, W. P. Huang, and X. Li, “Digital filter approach for simulation of a complex integrated laser diode based on the traveling wave model,” IEEE J. Quantum Electron.40(5), 473–480 (2004). [CrossRef]
  20. S. L. Sochava and W. B. Chapman, “Intra-cavity etalon with asymmetric power transfer function,” US Patent, 7061946 B2, 1–18 (2006).
  21. H. Stao and J. Ohya, “Theory of spectral linewidth of external cavity semiconductor lasers,” IEEE J. Quantum Electron.22(7), 1060–1063 (1986). [CrossRef]
  22. T. Fujita, J. Ohya, S. Ishizuka, K. Fujito, and H. Sato, “Oscillation frequency shift suppression of semiconductor lasers coupled to external cavity,” Electron. Lett.20(10), 416–417 (1984). [CrossRef]
  23. O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electron. Lett.17(17), 589–591 (1981). [CrossRef]
  24. N. Olsson and J. Van Der Ziel, “Performance characteristics of 1.5-µm external cavity semiconductor lasers for coherent optical communication,” J. Lightwave Technol.5(4), 510–515 (1987). [CrossRef]
  25. H. Loh, Y. J. Lin, I. Teper, M. Cetina, J. Simon, J. K. Thompson, and V. Vuletić, “Influence of grating parameters on the linewidths of external-cavity diode lasers,” Appl. Opt.45(36), 9191–9197 (2006). [CrossRef] [PubMed]
  26. A. Romano, M. D. Donno, and A. Pianciola, “Phase-control in an external-cavity tunable laser,” US Patent, 7505490 B2, 1–24 (2009).
  27. S. Camatel and V. Ferrero, “Narrow linewidth CW laser phase noise characterization methods for coherent transmission system application,” J. Lightwave Technol.26(17), 3048–3055 (2008). [CrossRef]
  28. N. H. Zhu, J. W. Man, H. G. Zhang, J. H. Ke, W. Han, W. Chen, Y. Liu, X. Wang, H. Q. Yuan, and L. Xie, “Lineshape analysis of the beat signal between optical carrier and delayed sidebands,” IEEE J. Quantum Electron.46(3), 347–353 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited