OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19683–19689

Phase transition in crowd synchrony of delay-coupled multilayer laser networks

Elad Cohen, Michael Rosenbluh, and Ido Kanter  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19683-19689 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An analogy between crowd synchrony and multi-layer neural network architectures is proposed. It indicates that many non-identical dynamical elements (oscillators) communicating indirectly via a few mediators (hubs) can synchronize when the number of delayed couplings to the hubs or the strength of the couplings is large enough. This phenomenon is modeled using a system of semiconductor lasers optically delay-coupled in either a fully connected or a diluted manner to a fixed number of non-identical central hub lasers. A universal phase transition to crowd synchrony with hysteresis is observed, where the time to achieve synchronization diverges near the critical coupling independent of the number of hubs.

© 2012 OSA

OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(200.4700) Optics in computing : Optical neural systems
(270.3100) Quantum optics : Instabilities and chaos
(060.4258) Fiber optics and optical communications : Networks, network topology
(060.4263) Fiber optics and optical communications : Networks, star

ToC Category:
Optics in Computing

Original Manuscript: June 11, 2012
Manuscript Accepted: July 28, 2012
Published: August 13, 2012

Elad Cohen, Michael Rosenbluh, and Ido Kanter, "Phase transition in crowd synchrony of delay-coupled multilayer laser networks," Opt. Express 20, 19683-19689 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Danino, O. Mondragón-Palomino, L. Tsimring, and J. Hasty, “A synchronized quorum of genetic clocks,” Nature463(7279), 326–330 (2010). [CrossRef] [PubMed]
  2. J. Garcia-Ojalvo, M. B. Elowitz, and S. H. Strogatz, “Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing,” Proc. Natl. Acad. Sci. U.S.A.101(30), 10955–10960 (2004). [CrossRef] [PubMed]
  3. K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, “Observation of antiphase states in a multimode laser,” Phys. Rev. Lett.65(14), 1749–1752 (1990). [CrossRef] [PubMed]
  4. S. H. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, 2003).
  5. P. Dallard, A. Fitzpatrick, A. Flint, S. Le Bourva, A. Low, R. Ridsdill Smith, and M. Willford, “The London millennium footbridge,” Structural Engineer79, 17–21 (2001).
  6. J. Zamora-Munt, C. Masoller, J. Garcia-Ojalvo, and R. Roy, “Crowd synchrony and quorum sensing in delay-coupled lasers,” Phys. Rev. Lett.105(26), 264101 (2010). [CrossRef] [PubMed]
  7. S. De Monte, F. d’Ovidio, S. Danø, and P. G. Sørensen, “Dynamical quorum sensing: Population density encoded in cellular dynamics,” Proc. Natl. Acad. Sci. U.S.A.104(47), 18377–18381 (2007). [CrossRef] [PubMed]
  8. A. F. Taylor, M. R. Tinsley, F. Wang, Z. Huang, and K. Showalter, “Dynamical quorum sensing and synchronization in large populations of chemical oscillators,” Science323(5914), 614–617 (2009). [CrossRef] [PubMed]
  9. J. Gómez-Gardeñes, S. Gómez, A. Arenas, and Y. Moreno, “Explosive synchronization transitions in scale-free networks,” Phys. Rev. Lett.106(12), 128701 (2011). [CrossRef] [PubMed]
  10. I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña-Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, “Explosive first-order transition to synchrony in networked chaotic oscillators,” Phys. Rev. Lett.108(16), 168702 (2012). [CrossRef] [PubMed]
  11. A. Engel and C. Broeck, Statistical Mechanics of Learning (Cambridge Univ Press, 2001).
  12. M. Opper and W. Kinzel, “Statistical mechanics of generalization,” in Models of Neural Networks III, E. D. J. L. van Hemmen, and K. Schulten, ed. (Springer-Verlag, 1996), 151–209.
  13. F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychol. Rev.65(6), 386–408 (1958). [CrossRef] [PubMed]
  14. M. Opper, “Learning in neural networks: Solvable dynamics,” Europhys. Lett.8(4), 389–392 (1989). [CrossRef]
  15. A. Priel, M. Blatt, T. Grossmann, E. Domany, and I. Kanter, “Computational capabilities of restricted two-layered perceptrons,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(1), 577–595 (1994). [CrossRef] [PubMed]
  16. G. Bertotti, Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers (Academic Press, 1998).
  17. T. R. Kirkpatrick and D. Thirumalai, “Dynamics of the structural glass transition and the p-spin-interaction spin-glass model,” Phys. Rev. Lett.58(20), 2091–2094 (1987). [CrossRef] [PubMed]
  18. D. J. Gross, I. Kanter, and H. Sompolinsky, “Mean-field theory of the Potts glass,” Phys. Rev. Lett.55(3), 304–307 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited