OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19690–19696

Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles

Jing Niu, Young Jun Shin, Jaesung Son, Youngbin Lee, Jong-Hyun Ahn, and Hyunsoo Yang  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19690-19696 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1297 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Shifting of the surface plasmon resonance wavelength induced by the variation of the thickness of insulating spacer between single layer graphene and Au nanoparticles is studied. The system demonstrates a blue-shift of 29 nm as the thickness of the spacer layer increases from 0 to 15 nm. This is due to the electromagnetic coupling between the localized surface plasmons excited in the nanoparticles and the graphene film. The strength of the coupling decays exponentially with a decay length of d/R = 0.36, where d is the spacer layer thickness and R is the diameter of the Au nanoparticles. The result agrees qualitatively well with the plasmon ruler equation. Interestingly, a further increment of the spacer layer thickness induces a red-shift of 17 nm in the resonance wavelength and the shift saturates when the thickness of the spacer layer increases above 20 nm.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: June 13, 2012
Revised Manuscript: August 7, 2012
Manuscript Accepted: August 8, 2012
Published: August 13, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Jing Niu, Young Jun Shin, Jaesung Son, Youngbin Lee, Jong-Hyun Ahn, and Hyunsoo Yang, "Shifting of surface plasmon resonance due to electromagnetic coupling between graphene and Au nanoparticles," Opt. Express 20, 19690-19696 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  2. A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys.81(1), 109–162 (2009). [CrossRef]
  3. Y. Wu, Y.-M. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,” Nature472(7341), 74–78 (2011). [CrossRef] [PubMed]
  4. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett.8(3), 902–907 (2008). [CrossRef] [PubMed]
  5. P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett.10(11), 4285–4294 (2010). [CrossRef] [PubMed]
  6. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotechnol.5(8), 574–578 (2010). [CrossRef] [PubMed]
  7. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S. H. Sim, Y. I. Song, B. H. Hong, and J.-H. Ahn, “Wafer-scale synthesis and transfer of graphene films,” Nano Lett.10(2), 490–493 (2010). [CrossRef] [PubMed]
  8. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881) (2008). [CrossRef] [PubMed]
  9. Y. J. Shin, R. Stromberg, R. Nay, H. Huang, A. T. S. Wee, H. Yang, and C. S. Bhatia, “Frictional characteristics of exfoliated and epitaxial graphene,” Carbon49(12), 4070–4073 (2011). [CrossRef]
  10. X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells,” Nano Lett.8(1), 323–327 (2008). [CrossRef] [PubMed]
  11. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  12. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  13. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011). [CrossRef]
  14. T. Mueller, F. Xia, and P. Avouris, “Graphene photodetectors for high-speed optical communications,” Nat. Photonics4(5), 297–301 (2010). [CrossRef]
  15. Y. Liu, R. Cheng, L. Liao, H. Zhou, J. Bai, G. Liu, L. Liu, Y. Huang, and X. Duan, “Plasmon resonance enhanced multicolour photodetection by graphene,” Nat. Commun.2, 579 (2011). [CrossRef] [PubMed]
  16. J. Niu, Y. Jun Shin, Y. Lee, J.-H. Ahn, and H. Yang, “Graphene induced tunability of the surface plasmon resonance,” Appl. Phys. Lett.100(6), 061116 (2012). [CrossRef]
  17. J. Niu, V. G. Truong, H. Huang, S. Tripathy, C. Qiu, A. T. S. Wee, T. Yu, and H. Yang, “Study of electromagnetic enhancement for surface enhanced Raman spectroscopy of SiC graphene,” Appl. Phys. Lett.100(19), 191601 (2012). [CrossRef]
  18. M. Hu, A. Ghoshal, M. Marquez, and P. G. Kik, “Single particle spectroscopy study of metal-film-induced tuning of silver nanoparticle plasmon resonances,” J. Phys. Chem. C114(16), 7509–7514 (2010). [CrossRef]
  19. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett.7(7), 2080–2088 (2007). [CrossRef]
  20. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett.97(18), 187401 (2006). [CrossRef] [PubMed]
  21. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett.80(19), 4249–4252 (1998). [CrossRef]
  22. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003). [CrossRef]
  23. G. Isić, M. Jakovljevic, M. Filipovic, D. Jovanovic, B. Vasic, S. Lazovic, N. Puac, Z. L. Petrovic, R. Kostic, R. Gajic, J. Humlicek, M. Losurdo, G. Bruno, I. Bergmair, and K. Hingerl, “Spectroscopic ellipsometry of few-layer graphene,” J. Nanophoton.5(1), 051809 (2011). [CrossRef]
  24. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic Press, 1998).
  25. S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chem. Rev.107(11), 4797–4862 (2007). [CrossRef] [PubMed]
  26. L. Genzel and T. P. Martin, “Infrared absorption by surface phonons and surface plasmons in small crystals,” Surf. Sci.34(1), 33–49 (1973). [CrossRef]
  27. T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near Infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B106(28), 7005–7012 (2002). [CrossRef]
  28. A. N. Shipway, M. Lahav, R. Gabai, and I. Willner, “Investigations into the electrostatically induced aggregation of Au nanoparticles,” Langmuir16(23), 8789–8795 (2000). [CrossRef]
  29. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999). [CrossRef]
  30. S. Kawata, M. Ohtsu, and M. Irie, Near-field Optics and Surface Plasmon Polaritons (Springer, 2001).
  31. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010). [CrossRef] [PubMed]
  32. C. L. Du, Y. M. You, K. Johnson, H. L. Hu, X. J. Zhang, and Z. X. Shen, “Near-field coupling effect between individual Au nanospheres and their supporting SiO2/Si substrate,” Plasmonics5(2), 105–109 (2010). [CrossRef]
  33. F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” J. Chem. Phys.53(3), 1126–1130 (1970). [CrossRef]
  34. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000). [CrossRef]
  35. D. C. Kim, D.-Y. Jeon, H.-J. Chung, Y. Woo, J. K. Shin, and S. Seo, “The structural and electrical evolution of graphene by oxygen plasma-induced disorder,” Nanotechnology20(37), 375703 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited