OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19708–19713

Strong correlations between incoherent vortices

A. J. Jesus-Silva, J. M. Hickmann, and E. J. S. Fonseca  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19708-19713 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1088 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We establish a correlation rule of which the value of the topological charge obtained in intensity correlation between two coherence vortices is such that this value is bounded by the topological charge of each coherence vortex. The original phase information is scrambled in each speckle pattern and unveiled using numerical intensity correlation. According to this rule, it is also possible to obtain a coherence vortex stable, an integer vortex, even when each incoherent vortex beam is instable, non-integer vortex.

© 2012 OSA

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Coherence and Statistical Optics

Original Manuscript: June 28, 2012
Revised Manuscript: August 7, 2012
Manuscript Accepted: August 8, 2012
Published: August 13, 2012

A. J. Jesus-Silva, J. M. Hickmann, and E. J. S. Fonseca, "Strong correlations between incoherent vortices," Opt. Express 20, 19708-19713 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. M. V. Berry, “Optical vortices evolving from helicoidal integer and fractional phase steps,” J. Opt. A, Pure Appl Opt.6(2), 259–268 (2004). [CrossRef]
  3. J. Leach, E. Yao, and M. J. Padgett, “Observation of the vortex structure of a non-integer vortex beam,” New J. Phys.6, 71 (2004). [CrossRef]
  4. A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M. Wright, “Visualization of the birth of an optical vortex using diffraction from a triangular aperture,” Opt. Express19(7), 5760–5771 (2011). [CrossRef] [PubMed]
  5. H. C. Huang, Y. T. Lin, and M. F. Shih, “Measuring the fractional orbital angular momentum of a vortex light beam by cascaded Mach-Zehnder interferometers,” Opt. Commun.285(4), 383–388 (2012). [CrossRef]
  6. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge; New York, 1995).
  7. F. Gori, M. Santarsiero, R. Borghi, and S. Vicalvi, “Partially coherent sources with helicoidal modes,” J. Mod. Opt.45(3), 539–554 (1998). [CrossRef]
  8. J. Serna and J. M. Movilla, “Orbital angular momentum of partially coherent beams,” Opt. Lett.26(7), 405–407 (2001). [CrossRef] [PubMed]
  9. G. V. Bogatyryova, C. V. Fel’de, P. V. Polyanskii, S. A. Ponomarenko, M. S. Soskin, and E. Wolf, “Partially coherent vortex beams with a separable phase,” Opt. Lett.28(11), 878–880 (2003). [CrossRef] [PubMed]
  10. G. Gbur and T. D. Visser, “Coherence vortices in partially coherent beams,” Opt. Commun.222(1-6), 117–125 (2003). [CrossRef]
  11. I. D. Maleev, D. M. Palacios, A. S. Marathay, and G. A. Swartzlander., “Spatial correlation vortices in partially coherent light: theory,” J. Opt. Soc. Am. B21(11), 1895–1900 (2004). [CrossRef]
  12. D. M. Palacios, I. D. Maleev, A. S. Marathay, and G. A. Swartzlander., “Spatial correlation singularity of a vortex field,” Phys. Rev. Lett.92(14), 143905 (2004). [CrossRef] [PubMed]
  13. W. Wang, Z. H. Duan, S. G. Hanson, Y. Miyamoto, and M. Takeda, “Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function,” Phys. Rev. Lett.96(7), 073902 (2006). [CrossRef] [PubMed]
  14. H. D. Pires, J. Woudenberg, and M. P. van Exter, “Measurements of spatial coherence of partially coherent light with and without orbital angular momentum,” J. Opt. Soc. Am. A27(12), 2630–2637 (2010). [CrossRef] [PubMed]
  15. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett.95(13), 131110 (2009). [CrossRef]
  16. I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, “Observation of interference pattern in the intensity correlation of a non-local object using a Hanbury Brown and Twiss-type experiment,” Europhys. Lett.82(3), 34004 (2008). [CrossRef]
  17. I. Vidal, D. P. Caetano, C. Olindo, E. J. S. Fonseca, and J. M. Hickmann, “Second-order interference with orthogonally polarized pseudothermal beams,” Phys. Rev. A78(5), 053815 (2008). [CrossRef]
  18. Y. Bromberg, Y. Lahini, E. Small, and Y. Silberberg, “Hanbury Brown and Twiss interferometry with interacting photons,” Nat. Photonics4(10), 721–726 (2010). [CrossRef]
  19. J. P. Kirk and A. L. Jones, “Phase-only complex-valued spatial filter,” J. Opt. Soc. Am.61(8), 1023–1028 (1971). [CrossRef]
  20. J. M. Hickmann, E. J. S. Fonseca, W. C. Soares, and S. Chávez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum,” Phys. Rev. Lett.105(5), 053904 (2010). [CrossRef] [PubMed]
  21. P. H. F. Mesquita, A. J. Jesus-Silva, E. J. S. Fonseca, and J. M. Hickmann, “Engineering a square truncated lattice with light’s orbital angular momentum,” Opt. Express19(21), 20616–20621 (2011). [CrossRef] [PubMed]
  22. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys.3(5), 305–310 (2007). [CrossRef]
  23. S. Straupe and S. Kulik, “Quantum optics the quest for higher dimensionality,” Nat. Photonics4(9), 585–586 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited