OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19714–19725

Wavefront reconstruction by modal decomposition

Christian Schulze, Darryl Naidoo, Daniel Flamm, Oliver A. Schmidt, Andrew Forbes, and Michael Duparré  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19714-19725 (2012)
http://dx.doi.org/10.1364/OE.20.019714


View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new method to determine the wavefront of a laser beam based on modal decomposition by computer-generated holograms. The hologram is encoded with a transmission function suitable for measuring the amplitudes and phases of the modes in real-time. This yields the complete information about the optical field, from which the Poynting vector and the wavefront are deduced. Two different wavefront reconstruction options are outlined: reconstruction from the phase for scalar beams, and reconstruction from the Poynting vector for inhomogeneously polarized beams. Results are compared to Shack-Hartmann measurements that serve as a reference and are shown to reproduce the wavefront and phase with very high fidelity.

© 2012 OSA

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(030.4070) Coherence and statistical optics : Modes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(090.1995) Holography : Digital holography
(140.3295) Lasers and laser optics : Laser beam characterization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Image Processing

History
Original Manuscript: June 29, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 3, 2012
Published: August 13, 2012

Citation
Christian Schulze, Darryl Naidoo, Daniel Flamm, Oliver A. Schmidt, Andrew Forbes, and Michael Duparré, "Wavefront reconstruction by modal decomposition," Opt. Express 20, 19714-19725 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-19714


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Roddier, M. Séchaud, G. Rousset, P.-Y. Madec, M. Northcott, J.-L. Beuzit, F. Rigaut, J. Beckers, D. Sandler, P. Léna, and O. Lai, Adaptive Optics in Astronomy (Cambridge, 1999). [CrossRef]
  2. M. A. A. Neil, R. Jukaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc. 200, 105–108 (2000). [CrossRef] [PubMed]
  3. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. 103, 17137–17142 (2006). [CrossRef] [PubMed]
  4. M. Booth, M. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998). [CrossRef]
  5. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004). [CrossRef] [PubMed]
  6. A. Roorda, F. Romero-Borja, I. William Donnelly, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002). [PubMed]
  7. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley, 2008).
  8. M. Paurisse, M. Hanna, F. Druon, and P. Georges, “Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography,” Opt. Lett. 35, 1428–1430 (2010). [CrossRef] [PubMed]
  9. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 951–953 (1999). [CrossRef]
  10. S. R. Chamot, C. Dainty, and S. Esposito, “Adaptive optics for ophthalmic applications using a pyramid wavefront sensor,” Opt. Express 14, 518–526 (2006). [CrossRef] [PubMed]
  11. M. P. Rimmer and J. C. Wyant, “Evaluation of large aberrations using a lateral-shear interferometer having variable shear,” Appl. Opt. 14, 142–150 (1975). [PubMed]
  12. J.-C. Chanteloup, F. Druon, M. Nantel, A. Maksimchuk, and G. Mourou, “Single-shot wave-front measurements of high-intensity ultrashort laser pulses with a three-wave interferometer,” Opt. Lett. 23, 621–623 (1998). [CrossRef]
  13. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phasederivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005). [CrossRef] [PubMed]
  14. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992). [CrossRef] [PubMed]
  15. L. Changhai, X. Fengjie, H. Shengyang, and J. Zongfu, “Performance analysis of multiplexed phase computer-generated hologram for modal wavefront sensing,” Appl. Opt. 50, 1631–1639 (2011). [CrossRef] [PubMed]
  16. I. A. Litvin, A. Dudley, F. S. Roux, and A. Forbes, “Azimuthal decomposition with digital holograms,” Opt. Express 20, 10996–11004 (2012). [CrossRef] [PubMed]
  17. R. Borrego-Varillas, C. Romero, J. R. V. de Aldana, J. M. Bueno, and L. Roso, “Wavefront retrieval of amplified femtosecond beams by second-harmonic generation,” Opt. Express 19, 22851–22862 (2011). [CrossRef] [PubMed]
  18. T. Kaiser, D. Flamm, S. Schröter, and M. Duparré, “Complete modal decomposition for optical fibers using CGH-based correlation filters,” Opt. Express 17, 9347–9356 (2009). [CrossRef] [PubMed]
  19. D. Flamm, D. Naidoo, C. Schulze, A. Forbes, and M. Duparré, “Mode analysis with a spatial light modulator as a correlation filter,” Opt. Lett. 37, 2478–2480 (2012). [CrossRef] [PubMed]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991) [CrossRef]
  21. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill Publishing Company, 1968).
  22. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1991).
  23. H. G. Berry, G. Gabrielse, and A. E. Livingston, “Measurement of the Stokes parameters of light,” Appl. Opt. 16, 3200–3205 (1977). [CrossRef] [PubMed]
  24. D. Flamm, O. A. Schmidt, C. Schulze, J. Borchardt, T. Kaiser, S. Schröter, and M. Duparré, “Measuring the spatial polarization distribution of multimode beams emerging from passive step-index large-mode-area fibers,” Opt. Lett. 35, 3429–3431 (2010). [CrossRef] [PubMed]
  25. B. Neubert and B. Eppich, “Influences on the beam propagation ratio M2,” Opt. Commun. 250, 241 – 251 (2005). [CrossRef]
  26. ISO, “ISO 15367-1:2003 lasers and laser-related equipment – test methods for determination of the shape of a laser beam wavefront – Part 1: Terminology and fundamental aspects,” (2003).
  27. R. T. Schermer, “Mode scalability in bent optical fibers,” Opt. Express 15, 15674–15701 (2007). [CrossRef] [PubMed]
  28. J. Leach, S. Keen, M. J. Padgett, C. Saunter, and G. D. Love, “Direct measurement of the skew angle of the poynting vector in a helically phased beam,” Opt. Express 14, 11919–11924 (2006). [CrossRef] [PubMed]
  29. F. A. Starikov, G. G. Kochemasov, S. M. Kulikov, A. N. Manachinsky, N. V. Maslov, A. V. Ogorodnikov, S. A. Sukharev, V. P. Aksenov, I. V. Izmailov, F. Y. Kanev, V. V. Atuchin, and I. S. Soldatenkov, “Wavefront reconstruction of an optical vortex by a Hartmann-Shack sensor,” Opt. Lett. 32, 2291–2293 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MPEG (224 KB)     
» Media 2: MPEG (324 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited