OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19726–19734

Integrated hybrid Si/InGaAs 50 Gb/s DQPSK receiver

Stefano Faralli, Kimchau N. Nguyen, Jonathan D. Peters, Daryl T. Spencer, Daniel J. Blumenthal, and John E. Bowers  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19726-19734 (2012)
http://dx.doi.org/10.1364/OE.20.019726


View Full Text Article

Enhanced HTML    Acrobat PDF (1121 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A monolithic 25 Gbaud DQPSK receiver based on delay interferometers and balanced detection has been designed and fabricated on the hybrid Si/InGaAs platform. The integrated 30 µm long InGaAs p-i-n photodetectors have a responsivity of 0.64 A/W at 1550 nm and a 3dB bandwidth higher than 25 GHz. The delay interferometer shows a delay time of 39.2 ps and an extinction ratio higher than 20 dB. The demodulation of a 25 Gb/s DPSK signal by a single branch of the receiver demonstrates its correct working principle.

© 2012 OSA

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(130.0130) Integrated optics : Integrated optics
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 2, 2012
Revised Manuscript: August 2, 2012
Manuscript Accepted: August 2, 2012
Published: August 13, 2012

Citation
Stefano Faralli, Kimchau N. Nguyen, Jonathan D. Peters, Daryl T. Spencer, Daniel J. Blumenthal, and John E. Bowers, "Integrated hybrid Si/InGaAs 50 Gb/s DQPSK receiver," Opt. Express 20, 19726-19734 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-19726


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006). [CrossRef]
  2. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, and Y. Painchaud, “100-Gb/s DQPSK transmission: From Laboratory Experiments to Field Trials,” J. Lightwave Technol.26(20), 3388–3402 (2008). [CrossRef]
  3. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” J. Lightwave Technol.24(12), 4711–4728 (2006). [CrossRef]
  4. L. Zimmermann, K. Voigt, G. Winzer, and K. Petermann, “Towards Silicon on Insulator DQPSK demodulators,” Proc. of OFC/NFOEC 2010, paper OThB3, San Diego, CA (2010).
  5. C. R. Doerr and L. Chen, “Monolithic PDM-DQPSK receiver in silicon,” Proc. of ECOC 2010, paper PD 3.6 (2010).
  6. R. Nagarajan, J. Rahn, M. Kato, J. Pleumeekers, D. Lambert, V. Lal, H.-S. Tsai, A. Nilsson, A. Dentai, M. Kuntz, R. Malendevich, J. Tang, J. Zhang, T. Butrie, M. Raburn, B. Little, W. Chen, G. Goldfarb, V. Dominic, B. Taylor, M. Reffle, F. Kish, and D. Welch, “10 Channel, 45.6 Gb/s per channel, polarization-multiplexed DQPSK, InP receiver photonic integrated circuit,” J. Lightwave Technol.29(4), 386–395 (2011). [CrossRef]
  7. C. R. Doerr, N. K. Fontaine, and L. L. Buhl, “PDM-DQPSK silicon receiver with integrated monitor and minimum number of controls,” IEEE Photon. Technol. Lett.24(8), 697–699 (2012). [CrossRef]
  8. T. Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D. L. Kwong, “Silicon modulators and Germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010). [CrossRef]
  9. K. Suzuki, H. C. Nguyen, T. Tamanuki, F. Shinobu, Y. Saito, Y. Sakai, and T. Baba, “Slow-light-based variable symbol-rate silicon photonics DQPSK receiver,” Opt. Express20(4), 4796–4804 (2012), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-20-4-4796 . [CrossRef] [PubMed]
  10. S. Faralli, K. N. Nguyen, H.-W. Chen, J. D. Peters, J. M. Garcia, D. J. Blumenthal, and J. E. Bowers, “25 Gbaud DQPSK Receiver Integrated on the Hybrid Silicon Platform,” Proc. of Group Four Photonics Conference 2011, 326–328, London, UK (2011).
  11. H. Park, A. W. Fang, D. Liang, Y.-H. Kuo, H.-H. Chang, B. R. Koch, H.-W. Chen, M. N. Sysak, R. Jones, and J. E. Bowers, “Photonic Integration on the Hybrid Silicon Evanescent Device Platform,” Adv. Opt. Tech. 682978 (2008).
  12. F. Morichetti, A. Canciamilla, C. Ferrari, M. Torregiani, A. Melloni, and M. Martinelli, “Roughness induced Backscattering in optical silicon waveguides,” Phys. Rev. Lett.104(3), 033902 (2010). [CrossRef] [PubMed]
  13. H. Park, Y.-H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express15(21), 13539–13546 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-21-13539 . [CrossRef] [PubMed]
  14. H. H. Chang, Y. H. Kuo, R. Jones, A. Barkai, and J. E. Bowers, “Integrated Hybrid Silicon Triplexer,” Opt. Express18(23), 23891–23899 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-18-23-23891 . [CrossRef] [PubMed]
  15. H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microwave Theory Tech.58(11), 3213–3219 (2010). [CrossRef]
  16. D. Liang, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Low-Threshold Hybrid Silicon Microring resonator lasers,” Proc. of IEEE/LEOS Winter Topical Meeting, paper TuD4.1 (2010).
  17. M. N. Sysak, D. Liang, R. Jones, G. Kurczveil, M. Piels, M. Fiorentino, R. G. Beausoleil, and J. E. Bowers, “Hybrid silicon laser technology: a thermal perspective,” IEEE J. Sel. Top. Quantum Electron.17(6), 1490–1498 (2011). [CrossRef]
  18. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011), http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-19-11-10940&id=214189 . [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited