OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19806–19814

Algorithm for reconstructing wide space-bandwidth information in parallel two-step phase-shifting digital holography

Tatsuki Tahara, Yuki Shimozato, Peng Xia, Yasunori Ito, Yasuhiro Awatsuji, Kenzo Nishio, Shogo Ura, Osamu Matoba, and Toshihiro Kubota  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19806-19814 (2012)
http://dx.doi.org/10.1364/OE.20.019806


View Full Text Article

Enhanced HTML    Acrobat PDF (2152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose an image-reconstruction algorithm of parallel phase-shifting digital holography (PPSDH) which is a technique of single-shot phase-shifting interferometry. In the conventional algorithms in PPSDH, the residual 0th-order diffraction wave and the conjugate images cannot be removed completely and a part of space-bandwidth information is discarded. The proposed algorithm can remove these residual images by modifying the calculation of phase-shifting interferometry and by using Fourier transform technique, respectively. Then, several types of complex amplitudes are derived from a recorded hologram according to the directions in which the neighboring pixels used for carrying out the spatial phase-shifting interferometry are aligned. Several distributions are Fourier-transformed and wide space-bandwidth information of the object wave is obtained by selecting the spectrum among the Fourier-transformed images in each region of the spatial frequency domain and synthesizing a Fourier-transformed image from the spectrum.

© 2012 OSA

OCIS Codes
(090.2880) Holography : Holographic interferometry
(100.2650) Image processing : Fringe analysis
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: June 20, 2012
Revised Manuscript: August 9, 2012
Manuscript Accepted: August 10, 2012
Published: August 14, 2012

Citation
Tatsuki Tahara, Yuki Shimozato, Peng Xia, Yasunori Ito, Yasuhiro Awatsuji, Kenzo Nishio, Shogo Ura, Osamu Matoba, and Toshihiro Kubota, "Algorithm for reconstructing wide space-bandwidth information in parallel two-step phase-shifting digital holography," Opt. Express 20, 19806-19814 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-19806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett.11(3), 77–79 (1967). [CrossRef]
  2. Y. Ichioka and M. Inuiya, “Direct phase detecting system,” Appl. Opt.11(7), 1507–1514 (1972). [CrossRef] [PubMed]
  3. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982). [CrossRef]
  4. U. Schnars and W. Jueptner, Digital Holography (Springer, 2005).
  5. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett.23(15), 1221–1223 (1998). [CrossRef] [PubMed]
  6. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt.38(23), 4990–4996 (1999). [CrossRef] [PubMed]
  7. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express16(16), 11776–11781 (2008). [CrossRef] [PubMed]
  8. S. Murata, D. Harada, and Y. Tanaka, “Spatial phase-shifting digital holography for three-dimensional particle tracking velocimetry,” Jpn. J. Appl. Phys.48(9), 09LB01 (2009). [CrossRef]
  9. E. Darakis, T. Khanam, A. Rajendran, V. Kariwala, T. J. Naughton, and A. K. Asundi, “Microparticle characterization using digital holography,” Chem. Eng. Sci.65(2), 1037–1044 (2010). [CrossRef]
  10. T. Higuchi, Q. D. Pham, S. Hasegawa, and Y. Hayasaki, “Three-dimensional positioning of optically trapped nanoparticles,” Appl. Opt.50(34), H183–H188 (2011). [CrossRef] [PubMed]
  11. E. Tajahuerce, O. Matoba, and B. Javidi, “Shift-invariant three-dimensional object recognition by means of digital holography,” Appl. Opt.40(23), 3877–3886 (2001). [CrossRef] [PubMed]
  12. Y. Frauel, T. J. Naughton, O. Matoba, E. Tajahuerce, and B. Javidi, “Three-dimensional imaging and processing using computational holographic imaging,” Proc. IEEE94(3), 636–653 (2006). [CrossRef]
  13. A. Stern and B. Javidi, “Theoretical analysis of three-dimensional imaging and recognition of micro-organisms with a single-exposure on-line holographic microscope,” J. Opt. Soc. Am. A24(1), 163–168 (2007). [CrossRef] [PubMed]
  14. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  15. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express15(12), 7231–7242 (2007). [CrossRef] [PubMed]
  16. M. Yokota and T. Adachi, “Digital holographic profilometry of the inner surface of a pipe using a current-induced wavelength change of a laser diode,” Appl. Opt.50(21), 3937–3946 (2011). [CrossRef] [PubMed]
  17. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997). [CrossRef] [PubMed]
  18. M. Sasada, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography that can achieve instantaneous measurement,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004), pp. 187–188.
  19. M. Sasada, A. Fujii, Y. Awatsuji, and T. Kubota, “Parallel quasi-phase-shifting digital holography implemented by simple optical set up and effective use of image-sensor pixels,” in Technical Digest of the 2004 ICO International Conference: Optics and Photonics in Technology Frontier (International Commission for Optics,2004), (Chiba, 2004), pp. 357–358.
  20. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase-shifting digital holography,” Appl. Phys. Lett.85(6), 1069–1071 (2004). [CrossRef]
  21. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, “Pixelated phase-mask dynamic interferometer,” Proc. SPIE5531, 304–314 (2004). [CrossRef]
  22. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt.47(19), D183–D189 (2008). [CrossRef] [PubMed]
  23. Ll. Martínez-León, M. Araiza-E, B. Javidi, P. Andrés, V. Climent, J. Lancis, and E. Tajahuerce, “Single-shot digital holography by use of the fractional Talbot effect,” Opt. Express17(15), 12900–12909 (2009). [CrossRef] [PubMed]
  24. H. Suzuki, T. Nomura, E. Nitanai, and T. Numata, “Dynamic recording of a digital hologram with single exposure by a wave-splitting phase-shifting method,” Opt. Rev.17(3), 176–180 (2010). [CrossRef]
  25. M. Lin, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting digital holography with adaptive function using phase-mode spatial light modulator,” Appl. Opt.51(14), 2633–2637 (2012). [CrossRef] [PubMed]
  26. T. Tahara, K. Ito, T. Kakue, M. Fujii, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel phase-shifting digital holographic microscopy,” Biomed. Opt. Express1(2), 610–616 (2010). [CrossRef] [PubMed]
  27. T. Kiire, S. Nakadate, M. Shibuya, and T. Yatagai, “Three-dimensional displacement measurement for diffuse object using phase-shifting digital holography with polarization imaging camera,” Appl. Opt.50(34), H189–H194 (2011). [CrossRef] [PubMed]
  28. T. Kakue, R. Yonesaka, T. Tahara, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “High-speed phase imaging by parallel phase-shifting digital holography,” Opt. Lett.36(21), 4131–4133 (2011). [CrossRef] [PubMed]
  29. T. Tahara, Y. Awatsuji, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative analysis and quantitative evaluation of the field of view and viewing zone of single-shot phase-shifting digital holography using space-division multiplexing,” Opt. Rev.17(6), 514–519 (2010). [CrossRef]
  30. T. Tahara, Y. Shimozato, T. Kakue, M. Fujii, P. Xia, Y. Awatsuji, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Comparative evaluation of the image-reconstruction algorithms of single-shot phase-shifting digital holography,” J. Electron. Imaging21(1), 013021 (2012). [CrossRef]
  31. T. Tahara, Y. Shimozato, Y. Awatsuji, K. Nishio, S. Ura, O. Matoba, and T. Kubota, “Spatial-carrier phase-shifting digital holography utilizing spatial frequency analysis for the correction of the phase-shift error,” Opt. Lett.37(2), 148–150 (2012). [CrossRef] [PubMed]
  32. Y. Awatsuji, M. Sasada, A. Fujii, and T. Kubota, “Scheme to improve the reconstructed image in parallel quasi-phase-shifting digital holography,” Appl. Opt.45(5), 968–974 (2006). [CrossRef] [PubMed]
  33. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett.31(10), 1414–1416 (2006). [CrossRef] [PubMed]
  34. A. Stern and B. Javidi, “Space-bandwidth conditions for efficient phase-shifting digital holographic microscopy,” J. Opt. Soc. Am. A25(3), 736–741 (2008). [CrossRef] [PubMed]
  35. B. T. Kimbrough, “Pixelated mask spatial carrier phase shifting interferometry algorithms and associated errors,” Appl. Opt.45(19), 4554–4562 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited