OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19850–19858

Imbalanced initial populations between dark and bright states in semiconductor quantum dots

Sheng-Di Lin, Ying-Jhe Fu, and Chun Cheng  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19850-19858 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the observation and analysis of long-lived exciton in individual InAs quantum dots (QDs). The general model considering the interplay between dark and bright states reveals the two key factors responsible for the long decay time: the shortened spin-flip time at elevated temperature and the imbalanced initial populations between the dark and bright states. The later one plays a key role in the unusual phenomena and leads to the possibility of spin-dependent relaxation process in QDs.

© 2012 OSA

OCIS Codes
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:

Original Manuscript: April 18, 2012
Revised Manuscript: July 11, 2012
Manuscript Accepted: August 12, 2012
Published: August 15, 2012

Sheng-Di Lin, Ying-Jhe Fu, and Chun Cheng, "Imbalanced initial populations between dark and bright states in semiconductor quantum dots," Opt. Express 20, 19850-19858 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Mowbray and M. S. Skolnick, “New physics and devices based on self-assembled semiconductor quantum dots,” J. Phys. D Appl. Phys.38(13), 2059–2076 (2005). [CrossRef]
  2. A. J. Ramsay, “A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots,” Semicond. Sci. Technol.25(10), 103001 (2010). [CrossRef]
  3. C. H. Wu, Y. G. Lin, S. L. Tyan, S. D. Lin, and C. P. Lee, “An investigation of quantum states in ultra-small InAs-GaAs quantum dots by means of photoluminescence,” Chin. J. Physiol.43, 847–855 (2005).
  4. A. Imamoḡlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999). [CrossRef]
  5. O. Labeau, P. Tamarat, and B. Lounis, “Temperature dependence of the luminescence lifetime of single CdSe/ZnS quantum dots,” Phys. Rev. Lett.90(25), 257404 (2003). [CrossRef] [PubMed]
  6. J. M. Smith, P. A. Dalgarno, R. J. Warburton, A. O. Govorov, K. Karrai, B. D. Gerardot, and P. M. Petroff, “Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot,” Phys. Rev. Lett.94(19), 197402 (2005). [CrossRef] [PubMed]
  7. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B65(19), 195315 (2002). [CrossRef]
  8. T. Kümmell, S. V. Zaitsev, A. Gust, C. Kruse, D. Hommel, and G. Bacher, “Radiative recombination in photoexcited quantum dots up to room temperature: the role of fine-structure effects,” Phys. Rev. B81(24), 241306 (2010). [CrossRef]
  9. J. Johansen, B. Julsgaard, S. Stobbe, J. M. Hvam, and P. Lodahl, “Probing long-lived dark excitons in self-assembled quantum dots,” Phys. Rev. B81(8), 081304 (2010). [CrossRef]
  10. C. Cheng, S. D. Lin, C. H. Pan, C. H. Lin, and Y. J. Fu, “Observation of long-lived excitons in InAs quantum dots under thermal redistribution temperature,” Phys. Lett. A376(17), 1495–1498 (2012). [CrossRef]
  11. W. Yang, R. R. Lowe-Webb, H. Lee, and P. C. Sercel, “Effect of carrier emission and retrapping on luminescence time decays in InAs-GaAs quantum dots,” Phys. Rev. B56(20), 13314–13320 (1997). [CrossRef]
  12. S. Sanguinetti, M. Henini, M. Grassi Alessi, M. Capizzi, P. Frigeri, and S. Franchi, “Carrier thermal escape and retrapping in self-assembled quantum dots,” Phys. Rev. B60(11), 8276–8283 (1999). [CrossRef]
  13. G. Wang, S. Fafard, D. Leonard, J. E. Bowers, J. L. Merz, and P. M. Petroff, “Time-resolved optical characterization of InGaAs/GaAs quantum dots,” Appl. Phys. Lett.64(21), 2815–2817 (1994). [CrossRef]
  14. D. I. Lubyshev, P. P. Gonzalez-Borrero, E. Marega, E. Petitprez, N. La Scala, and P. Basmaji, “Exciton localization and temperature stability in self-organized InAs quantum dots,” Appl. Phys. Lett.68(2), 205–207 (1996). [CrossRef]
  15. H. Yu, S. Lycett, C. Roberts, and R. Murray, “Time resolved study of self-assembled InAs quantum dots,” Appl. Phys. Lett.69(26), 4087–4089 (1996). [CrossRef]
  16. C. H. Lin, H. S. Lin, C. C. Huang, S. K. Su, S. D. Lin, K. W. Sun, C. P. Lee, Y. K. Liu, M. D. Yang, and J. L. Shen, “Temperature dependence of time-resolved photoluminescence spectroscopy in InAs/GaAs quantum ring,” Appl. Phys. Lett.94(18), 183101 (2009). [CrossRef]
  17. M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, and J. M. Gérard, “Spin relaxation quenching in semiconductor quantum dots,” Phys. Rev. Lett.86(8), 1634–1637 (2001). [CrossRef] [PubMed]
  18. Y. H. Liao, J. I. Climente, and S. J. Cheng, “Dominant channels of exciton spin relaxation in photoexcited self-assembled (In,Ga)As quantum dots,” Phys. Rev. B83(16), 165317 (2011). [CrossRef]
  19. B. Patton, W. Langbein, and U. Woggon, “Trion, biexciton, and exciton dynamics in single self-assembled CdSe quantum dots,” Phys. Rev. B68(12), 125316 (2003). [CrossRef]
  20. G. A. Narvaez, G. Bester, A. Franceschetti, and A. Zunger, “Excitonic exchange effects on the radiative decay time of monoexcitons and biexcitons in quantum dots,” Phys. Rev. B74(20), 205422 (2006). [CrossRef]
  21. P. Maletinsky, C. W. Lai, A. Badolato, and A. Imamoḡlu, “Nonlinear dynamics of quantum dot nuclear spins,” Phys. Rev. B75(3), 035409 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited