OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19912–19920

Photonic crystal-based all-optical on-chip sensor

Y. Liu and H. W. M. Salemink  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 19912-19920 (2012)
http://dx.doi.org/10.1364/OE.20.019912


View Full Text Article

Enhanced HTML    Acrobat PDF (1372 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we demonstrate a sensor based on a two-dimensional photonic crystal cavity structure. Design, theoretical simulations, fabrication and experiments are shown to illustrate the working principle of this device. Sensitivity of our sensor is determined by observing the shift of resonant wavelength of the photonic crystal cavity as a function of the refractive index variation of the analyte. By experimentally infiltrating solutions of water and ethanol through an elastomeric micro-fluidic channel, we have confirmed that our all-optical sensor achieves a sensitivity of 460 nm/RIU.

© 2012 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.7400) Optical devices : Waveguides, slab
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Sensors

History
Original Manuscript: May 1, 2012
Revised Manuscript: June 24, 2012
Manuscript Accepted: June 29, 2012
Published: August 15, 2012

Citation
Y. Liu and H. W. M. Salemink, "Photonic crystal-based all-optical on-chip sensor," Opt. Express 20, 19912-19920 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-19912


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Levi, M. Lee, J. Zhang, V. Lousse, S. Brueck, S. Fan, and J. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007). [CrossRef]
  2. M. Adams, G. DeRose, M. Loncar, and A. Scherer, “Lithographically fabricated optical cavities for refractive index sensing,” J. Vac. Sci. Technol. B23(6), 3168–3173 (2005). [CrossRef]
  3. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1-2), 3–15 (1999). [CrossRef]
  4. A. Ymeti, J. S. Kanger, J. Greve, G. A. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20(7), 1417–1421 (2005). [CrossRef] [PubMed]
  5. R. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B Chem.38(1-3), 13–28 (1997). [CrossRef]
  6. E. Udd and W. Spillman, Fiber Optic Sensors—an Introduction for Engineers and Scientists (Wiley, 2011).
  7. J. Jensen, P. Hoiby, G. Emiliyanov, O. Bang, L. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express13(15), 5883–5889 (2005). [CrossRef] [PubMed]
  8. L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express14(18), 8224–8231 (2006). [CrossRef] [PubMed]
  9. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt.40(31), 5742–5747 (2001). [CrossRef] [PubMed]
  10. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]
  11. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express13(4), 1202–1214 (2005). [CrossRef] [PubMed]
  12. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater.4(3), 207–210 (2005). [CrossRef]
  13. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express14(5), 1996–2002 (2006). [CrossRef] [PubMed]
  14. S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs,” Phys. Rev. B60(8), 5751–5758 (1999). [CrossRef]
  15. T. Krauss and R. De La Rue, “Photonic crystal in the optical regime-past, present and future,” Prog. Quantum Electron.23(2), 51–96 (1999). [CrossRef]
  16. N. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid. Nanofluid.4(1–2), 117–127 (2008). [CrossRef]
  17. F. Hsiao and C. Lee, “Nanophotonic biosensors using hexagonal nanoring resonators: computational study,” J. Micro/Nanolithogr. MEMS MOEMS10(1), 013001 (2011).
  18. C. Kang, C. T. Phare, Y. A. Vlasov, S. Assefa, and S. M. Weiss, “Photonic crystal slab sensor with enhanced surface area,” Opt. Express18(26), 27930–27937 (2010). [CrossRef] [PubMed]
  19. X. Serey, S. Mandal, and D. Erickson, “Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials,” Nanotechnology21(30), 305202 (2010). [CrossRef] [PubMed]
  20. D. Dorfner, T. Zabel, T. Hürlimann, N. Hauke, L. Frandsen, U. Rant, G. Abstreiter, and J. Finley, “Photonic crystal nanostructures for optical biosensing applications,” Biosens. Bioelectron.24(12), 3688–3692 (2009). [CrossRef] [PubMed]
  21. E. Guillermain and P. Fauchet, “Multi-channel biodetection via resonant microcavities coupled to a photonic crystal waveguide,” Proc. SPIE7167, 71670D (2009). [CrossRef]
  22. S. C. Buswell, V. A. Wright, J. M. Buriak, V. Van, and S. Evoy, “Specific detection of proteins using photonic crystal waveguides,” Opt. Express16(20), 15949–15957 (2008). [CrossRef] [PubMed]
  23. S. Mandal, R. Akhmechet, L. Chen, S. Nugen, A. Baeumner, and D. Erickson, “Nanoscale optofluidic sensor arrays for dengue virus detection,” Proc. SPIE6645, 66451J (2007). [CrossRef]
  24. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express16(3), 1623–1631 (2008). [CrossRef] [PubMed]
  25. M. Lončar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82(26), 4648–4650 (2003). [CrossRef]
  26. M. L. Adams, M. Loncar, A. Scherer, and Y. Qiu, “Microfluidic integration of porous photonic crystal nanolasers for chemical sensing,” IEEE J. Sel. Areas Comm.23(7), 1348–1354 (2005). [CrossRef]
  27. T. Tanabe, M. Notomi, and E. Kuramochi, “Measurement of ultra-high-Q photonic crystal nanocavity using single-sideband frequency modulator,” Electron. Lett.43(3), 187–188 (2007). [CrossRef]
  28. A. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  29. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys.114(2), 185–200 (1994). [CrossRef]
  30. V. Mandelshtam and H. Taylor, “Harmonic inversion of time signals and its applications,” J. Chem. Phys.107(17), 6756–6770 (1997). [CrossRef]
  31. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature425(6961), 944–947 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited