OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19928–19935

Resonant metamaterials for contrast enhancement in optical lithography

Sabine Dobmann, Dzmitry Shyroki, Peter Banzer, Andreas Erdmann, and Ulf Peschel  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19928-19935 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3557 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transmission through ultra-thin metal films is noticeable and thus limits their potential for the formation of lithographic masks. By sub-wavelength patterning of a metal film with a post structure, a resonant metamaterial is formed, which can effectively suppress the transmission. Measurements as well as calculations identify the width of the metal islands as a critical geometrical feature. Hence, the extraordinarily low transmission effect can be explained by the resonant response of single scatterers known as Localized Surface Plasmon Resonances (LSPR). A potential application of this suppressed transmission effect to thin metal masks in optical lithography is experimentally investigated.

© 2012 OSA

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(220.3740) Optical design and fabrication : Lithography
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: June 12, 2012
Revised Manuscript: July 15, 2012
Manuscript Accepted: July 16, 2012
Published: August 15, 2012

Sabine Dobmann, Dzmitry Shyroki, Peter Banzer, Andreas Erdmann, and Ulf Peschel, "Resonant metamaterials for contrast enhancement in optical lithography," Opt. Express 20, 19928-19935 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. McIntyre, M. Hibbs, J. Tirapu-Azpiroz, G. Han, S. Halle, T. Faure, R. Deschner, B. Morgenfeld, S. Ramaswamy, A. Wagner, T. Brunner, and Y. Kikuchi, “Lithographic qualification of new opaque MoSi binary mask blank for the 32-nm node and beyond,” J. Micro/Nanolith. MEMS MOEMS9, 013010 (2010).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391, 667–669 (1998). [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys.82, 729–787 (2010). [CrossRef]
  4. F. J. García de Abajo, “Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007). [CrossRef]
  5. J. Kindler, P. Banzer, S. Quabis, U. Peschel, and G. Leuchs, “Waveguide properties of single subwavelength holes demonstrated with radially and azimuthally polarized light,” Appl. Phys. B89, 517–520 (2007). [CrossRef]
  6. P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, “Extraordinary transmission through a single coaxial aperture in a thin metal film,” Opt. Express18, 10896–10904 (2010). [CrossRef] [PubMed]
  7. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B79, 161406 (2009). [CrossRef]
  8. D. Reibold, F. Shao, A. Erdmann, and U. Peschel, “Extraordinary low transmission effects for ultra-thin patterned metal films,” Opt. Express17, 544–551 (2009). [CrossRef] [PubMed]
  9. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103, 203901 (2009). [CrossRef]
  10. S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett.36, 37–39 (2011). [CrossRef] [PubMed]
  11. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007). [CrossRef] [PubMed]
  12. P.-C. Li, Y. Zhao, A. Alù, and E. T. Yu, “Experimental realization and modeling of a subwavelength frequency-selective plasmonic metasurface,” Appl. Phys. Lett.99, 221106 (2011). [CrossRef]
  13. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express18, 10905–10923 (2010). [CrossRef] [PubMed]
  14. D. M. Shyroki, A. M. Ivinskaya, and A. V. Lavrinenko, “Free-space squeezing assists perfectly matched layers in simulations on a tight domain,” IEEE Antennas Wireless Propag. Lett.9, 389–392 (2010). [CrossRef]
  15. R. Voelkel, U. Vogler, A. Bramati, T. Weichelt, L. Stuerzebecher, U. D. Zeitner, K. Motzek, A. Erdmann, M. Hornung, and R. Zoberbier, “Advanced mask aligner lithography (amalith),” Proc. SPIE8326, 83261Y (2012).
  16. J. T. Fourkas, “Nanoscale photolithography with visible light,” J. Phys. Chem. Lett.1, 1221–1227 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited