OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19946–19955

Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation

John S. Parker, Abirami Sivananthan, Erik Norberg, and Larry A. Coldren  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19946-19955 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a regrowth-free material platform to create monolithic InGaAsP/InP photonic integrated circuits (PICs) with high-gain active and low-loss passive sections via a PL detuning of >135 nm. We show 2.5 µm wide by 400 µm long semiconductor optical amplifiers with >40 dB/mm gain at 1570 nm, and passive waveguide losses <2.3 dB/mm. The bandgap in the passive section is detuned using low-energy 190 keV channelized phosphorous implantation and subsequent rapid thermal annealing to achieve impurity-induced quantum well intermixing (QWI). The PL wavelengths in the active and passive sections are 1553 and 1417 nm, respectively. Lasing wavelengths for 500 µm Fabry-Perot lasers are 1567 and 1453 nm, respectively.

© 2012 OSA

OCIS Codes
(140.4480) Lasers and laser optics : Optical amplifiers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.3140) Optoelectronics : Integrated optoelectronic circuits

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 26, 2012
Revised Manuscript: August 1, 2012
Manuscript Accepted: August 1, 2012
Published: August 15, 2012

John S. Parker, Abirami Sivananthan, Erik Norberg, and Larry A. Coldren, "Regrowth-free high-gain InGaAsP/InP active-passive platform via ion implantation," Opt. Express 20, 19946-19955 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Cheng, J. Pan, S. Liang, W. Feng, Z. Liao, F. Zhou, B. Wang, L. Zhao, H. Zhu, and W. Wang, “Butt-coupled MOVPE growth for high-performance electro-absorption modulator integrated with a DFB laser,” J. Cryst. Growth308(2), 297–301 (2007). [CrossRef]
  2. M. Aoki, M. Suzuki, H. Sano, T. Kawano, T. Ido, T. Taniwatari, K. Uomi, and A. Takai, “InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,” J. Quantum Electron.29(6), 2088–2096 (1993). [CrossRef]
  3. T. K. Ong, Y. C. Chan, Y. L. Lam, and B. S. Ooi, “Wavelength tuning in InGaAs/InGaAsP quantum well lasers using pulsed-photoabsorption-induced disordering,” Appl. Phys. Lett.78(18), 2637–2639 (2001). [CrossRef]
  4. T. K. Ong, O. Gunawan, B. S. Ooi, Y. L. Lam, Y. C. Chan, Y. Zhou, A. S. Helmy, and J. H. Marsh, “High-spatial-resolution quantum-well intermixing process in GaInAs/GaInAsP laser structure using pulsed-photoabsorption-induced disordering,” J. Appl. Phys.87(6), 2775–2779 (2000). [CrossRef]
  5. B. C. Qiu, A. C. Bryce, R. M. de la Rue, and J. H. Marsh, “Monolithic integration in InGaAs-InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett.10(6), 769–771 (1998). [CrossRef]
  6. H. S. Djie, T. Mei, J. Arokiaraj, C. Sookdhis, S. F. Yu, L. K. Ang, and X. H. Tang, “Experimental and theoretical analysis of argon plasma-enhanced quantum-well intermixing,” J. Quantum Electron.40(2), 166–174 (2004). [CrossRef]
  7. H. S. Djie, C. Sookdhis, T. Mei, and J. Arokiaraj, “Photonic integration using inductively coupled argon plasma enhanced quantum well intermixing,” Electron. Lett.38(25), 1672–1673 (2002). [CrossRef]
  8. K.-H. Lee, J. O'Callaghan, B. Roycroft, C. L. Daunt, H. Yang, J. H. Song, F. H. Peters, and B. Corbett, “Quantum well intermixing in AlInGaAs MQW structures through impurity-free vacancy method,” Proc. SPIE7604, 76040J, 76040J-7 (2010). [CrossRef]
  9. S. K. Si, D. H. Yeo, H. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP-InP multiquantum-well intermixing by impurity-free vacancy diffusion,” IEEE J. Sel. Top. Quantum Electron.4(4), 619–623 (1998). [CrossRef]
  10. J. Zhao, Z. C. Feng, Y. C. Wang, J. C. Deng, and G. Xu, “Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering,” Surf. Coat. Tech.200(10), 3245–3249 (2006). [CrossRef]
  11. S. Charbonneau, E. S. Koteles, P. J. Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Sel. Top. Quantum Electron.4(4), 772–793 (1998). [CrossRef]
  12. P. J. Poole, S. Charbonneau, G. C. Aers, T. E. Jackman, M. Buchanan, M. Dion, R. D. Goldberg, and I. V. Mitchell, “Defect diffusion in ion implanted AlGaAs and InP: Consequences for quantum well intermixing,” J. Appl. Phys.78(4), 2367–2371 (1995). [CrossRef]
  13. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, and A. J. Seeds, “Fast tuneable InGaAsP DBR laser using quantum-confined stark-effect-induced refractive index change,” IEEE J. Sel. Top. Quantum Electron.13(5), 1112–1121 (2007). [CrossRef]
  14. M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, “Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparison between strained and lattice-matched quantum-well structures,” IEEE J. Sel. Top. Quantum Electron.4(4), 741–745 (1998). [CrossRef]
  15. V. Aimez, J. Beauvais, J. Beerens, D. Morris, H. S. Lim, and B. S. Ooi, “Low-energy ion-implantation-induced quantum-well intermixing,” IEEE J. Sel. Top. Quantum Electron.8(4), 870–879 (2002). [CrossRef]
  16. M. Chicoine, A. Francois, C. Tavares, S. Chevobbe, F. Schiettekatte, V. Aimez, J. Beauvais, and J. Beerens, “Effects of damage accumulation on quantum well intermixing by low-energy ion implantation in photonic devices,” Proc. SPIE5260, 423–431 (2003). [CrossRef]
  17. D. Barba, B. Salem, D. Morris, V. Aimez, J. Beauvais, M. Chicoine, and F. Schiettekatte, “Ion channeling effects on quantum well intermixing in phosphorus-implanted InGaAsP/InGaAs/InP,” J. Appl. Phys.98(5), 054904–054908 (2005). [CrossRef]
  18. E. J. Skogen, J. W. Raring, J. S. Barton, S. P. DenBaars, and L. A. Coldren, “Postgrowth control of the quantum-well band edge for the monolithic integration of widely tunable lasers and electroabsorption modulators,” IEEE J. Sel. Top. Quantum Electron.9(5), 1183–1190 (2003). [CrossRef]
  19. J. W. Raring and L. A. Coldren, “40-Gb/s Widely Tunable Transceivers,” IEEE J. Sel. Top. Quantum Electron.13(1), 3–14 (2007). [CrossRef]
  20. W. Guo, Q. Lu, M. Nawrocka, A. Abdullaev, J. O'Callaghan, M. Lynch, V. Weldon, and J. F. Donegan, “Integrable Slotted Single-Mode Lasers,” IEEE Photon. Technol. Lett.24(8), 634–636 (2012). [CrossRef]
  21. M. Silver and E. P. O'Reilly, “Optimization of long wavelength InGaAsP strained quantum-well lasers,” J. Quantum Electron.31(7), 1193–1200 (1995). [CrossRef]
  22. T. Takeda, S. Tazawa, and A. Yoshii, “Precise ion-implantation analysis including channeling effects,” IEEE Trans. Electron Devices33(9), 1278–1285 (1986). [CrossRef]
  23. J. Bausells, G. Badenes, and E. Lora-Tamayo, “Calculation of channeling effects in ion implantation,” Nucl. Instrum. Meth. B55(1-4), 666–670 (1991). [CrossRef]
  24. Y.-F. Lao, H. Wu, and Z.-C. Huang, “Luminescent properties of annealed and directly wafer-bonded InAsP/InGaAsP multiple quantum wells,” Semicond. Sci. Technol.20(6), 615–620 (2005). [CrossRef]
  25. C. Blaauw, B. Emmerstorfer, D. Kreller, L. Hobbs, and A. J. Springthorpe, “Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD,” J. Electron. Mater.21(2), 173–179 (1992). [CrossRef]
  26. E. F. Schubert, C. J. Pinzone, and M. Geva, “Phenomenology of Zn diffusion and incorporation in InP grown by organometallic vapor‐phase epitaxy (OMVPE),” Appl. Phys. Lett.67(5), 700–702 (1995). [CrossRef]
  27. N. Yoshimoto, Y. Shibata, S. Oku, S. Kondo, and Y. Noguchi, “Design and demonstration of polarization insensitive Mach-Zehnder switch using a lattice-matched ingaalas/inalas mqw and deep-etched high-mesa waveguide structure,” J. Lightwave Technol.17(9), 1662–1668 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited