OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19956–19971

Photophysics of single silicon vacancy centers in diamond: implications for single photon emission

Elke Neu, Mario Agio, and Christoph Becher  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19956-19971 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2440 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single silicon vacancy (SiV) color centers in diamond have recently shown the ability for high brightness, narrow bandwidth, room temperature single photon emission. This work develops a model describing the three level population dynamics of single SiV centers in diamond nanocrystals on iridium surfaces including an intensity dependent de-shelving process. Furthermore, we investigate the brightness and photostability of single centers and find maximum single photon rates of 6.2 Mcps under continuous excitation. We investigate the collection efficiency of the fluorescence and estimate quantum efficiencies of the SiV centers.

© 2012 OSA

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5290) Quantum optics : Photon statistics
(300.6250) Spectroscopy : Spectroscopy, condensed matter

ToC Category:
Quantum Optics

Original Manuscript: July 2, 2012
Revised Manuscript: July 26, 2012
Manuscript Accepted: August 8, 2012
Published: August 15, 2012

Elke Neu, Mario Agio, and Christoph Becher, "Photophysics of single silicon vacancy centers in diamond: implications for single photon emission," Opt. Express 20, 19956-19971 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. Aharonovich, S. Castelletto, D. Simpson, C. Su, A. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys.74, 076501 (2011). [CrossRef]
  2. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium,” New J. Phys.13, 025012 (2011). [CrossRef]
  3. E. Neu, C. Arend, E. Gross, F. Guldner, C. Hepp, D. Steinmetz, E. Zscherpel, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, Y. Liang, A. Krueger, and C. Becher, “Narrowband fluorescent nanodiamonds produced from chemical vapor deposition films,” Appl. Phys. Lett.98, 243107 (2011). [CrossRef]
  4. C. Wang, C. Kurtsiefer, H. Weinfurter, and B. Burchard, “Single photon emission from SiV centres in diamond produced by ion implantation.” J. Phys. B: At. Mol. Opt. Phys.39, 37–41 (2006). [CrossRef]
  5. C. Wang, “A solid-state single photon source based on color centers in diamond,” Ph.D. thesis, Technische Universität München (2007).
  6. E. Neu, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium,” Phys. Rev. B84, 205211 (2011). [CrossRef]
  7. J. Greffet, J. Hugonin, M. Besbes, N. Lai, F. Treussart, and J. Roch, “Diamond particles as nanoantennas for nitrogen-vacancy color centers,” Arxiv preprint arXiv:1107.0502 (2011).
  8. K. Iakoubovskii and G. J. Adriaenssens, “Luminescence excitation spectra in diamond,” Phys. Rev. B61, 10174– 10182 (2000). [CrossRef]
  9. I. Osad’ko, “Determination of electron-phonon coupling from structured optical spectra of impurity centers,” Sov. Phys. Usp.22, 311–329 (1979). [CrossRef]
  10. S. Kitson, P. Jonsson, J. Rarity, and P. Tapster, “Intensity fluctuation spectroscopy of small numbers of dye molecules in a microcavity,” Phys. Rev. A58, 620–627 (1998). [CrossRef]
  11. L. Bergman, M. McClure, J. Glass, and R. Nemanich, “The origin of the broadband luminescence and the effect of nitrogen doping on the optical properties of diamond films,” J. Appl. Phys.76, 3020–3027 (1994). [CrossRef]
  12. A. Mora, J. Steeds, and J. Butler, “Relationship between grain boundaries and broad luminescence peaks in CVD diamond films,” Diam. Relat. Mater.12, 310–317 (2003). [CrossRef]
  13. R. Brouri, A. Beveratos, J. Poizat, and P. Grangier, “Photon antibunching in the fluorescence of individual color centers in diamond,” Opt. Lett.25, 1294–1296 (2000). [CrossRef]
  14. B. Lounis and M. Orrit, “Single photon sources,” Rep. Prog. Phys.68, 1129–1179 (2005). [CrossRef]
  15. I. Aharonovich, S. Castelletto, D. A. Simpson, A. D. Greentree, and S. Prawer, “Photophysics of chromium-related diamond single-photon emitters,” Phys. Rev. A81, 043813 (2010). [CrossRef]
  16. L. Fleury, J. Segura, G. Zumofen, B. Hecht, and U. Wild, “Nonclassical photon statistics in single-molecule fluorescence at room temperature,” Phys. Rev. Lett.84, 1148–1151 (2000). [CrossRef] [PubMed]
  17. R. Chapman and T. Plakhotnik, “Quantitative luminescence microscopy on nitrogen-vacancy centres in diamond: Saturation effects under pulsed excitation,” Chem. Phys. Lett.507, 190–194 (2011). [CrossRef]
  18. E. Wu, V. Jacques, H. Zeng, P. Grangier, F. Treussart, and J.-F. Roch, “Narrow-band single-photon emission in the near infrared for quantum key distribution,” Opt. Express14, 1296–1303 (2006). [CrossRef] [PubMed]
  19. P. Siyushev, V. Jacques, I. Aharonovich, F. Kaiser, T. Müller, L. Lombez, M. Atatüre, S. Castelletto, S. Prawer, F. Jelezko, and J. Wrachtrup, “Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds,” New J. Phys.11, 113029 (2009). [CrossRef]
  20. C. Bradac, T. Gaebel, N. Naidoo, M. J. Sellars, J. Twamley, L. J. Brown, A. S. Barnard, T. Plakhotnik, A. V. Zvyagin, and J. R. Rabeau, “Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds,” Nature Nanotech.5, 345–349 (2010). [CrossRef]
  21. U. F. S. D’Haenens-Johansson, A. M. Edmonds, B. L. Green, M. E. Newton, G. Davies, P. M. Martineau, R. U. A. Khan, and D. J. Twitchen, “Optical properties of the neutral silicon split-vacancy center in diamond,” Phys. Rev. B84, 245208 (2011). [CrossRef]
  22. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J. Boudou, P. Curmi, M. Sennour, A. Thorel, M. Boersch, K. Aulenbacher, R. Erdmann, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Fluorescence and Spin Properties of Defects in Single Digit Nanodiamonds,” ACS Nano3, 1959–1965 (2009). [CrossRef] [PubMed]
  23. T.-L. Wee, Y.-K. Tzeng, C.-C. Han, H.-C. Chang, W. Fann, J.-H. Hsu, K.-M. Chen, and Y.-C. Yull, “Two-photon excited fluorescence of nitrogen-vacancy centers in proton-irradiated type Ib diamond,” J. Phys. Chem. A111, 9379–9386 (2007). [CrossRef] [PubMed]
  24. R. Ulbricht, S. T. van der Post, J. P. Goss, P. R. Briddon, R. Jones, R. U. A. Khan, and M. Bonn, “Single substitutional nitrogen defects revealed as electron acceptor states in diamond using ultrafast spectroscopy,” Phys. Rev. B84, 165202 (2011). [CrossRef]
  25. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978). [CrossRef]
  26. L. Rogobete, H. Schniepp, V. Sandoghdar, and C. Henkel, “Spontaneous emission in nanoscopic dielectric particles,” Opt. Lett.28, 1736–1738 (2003). [CrossRef] [PubMed]
  27. X.-W. Chen, M. Agio, and V. Sandoghdar, “Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012). [CrossRef]
  28. E. D. Palik and G. Ghosh, eds., Handbook of Optical Constants of Solids (Academic Press, New York, 1998).
  29. A. V. Turukhin, C.-H. Liu, A. A. Gorokhovsky, R. R. Alfano, and W. Phillips, “Picosecond photoluminescence decay of Si-doped chemical-vapor-deposited diamond films,” Phys. Rev. B54, 16448–16451 (1996). [CrossRef]
  30. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B4, 337–350 (1987). [CrossRef]
  31. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, UK, 2006). [CrossRef]
  32. E. Neu, R. Albrecht, M. Fischer, S. Gsell, M. Schreck, and C. Becher, “Electronic transitions of single silicon vacancy centers in the near-infrared spectral region,” Phys. Rev. B85, 245207 (2012). [CrossRef]
  33. S. Castelletto and A. Boretti, “Radiative and nonradiative decay rates in chromium-related centers in nanodiamonds,” Opt. Lett.36, 4224–4226 (2011). [CrossRef] [PubMed]
  34. B. Smith, D. Gruber, and T. Plakhotnik, “The effects of surface oxidation on luminescence of nano diamonds,” Diam. Relat. Mater.19, 314–318 (2010). [CrossRef]
  35. S. Grudinkin, N. Feoktistov, A. Medvedev, K. Bogdanov, A. Baranov, A. Vul, and V. Golubev, “Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres,” J. Phys. D: Appl. Phys.45, 062001 (2012). [CrossRef]
  36. L. Rogers, “How far into the infrared can a colour centre in diamond emit?” Physics Procedia3, 1557–1561 (2010). 10th International Meeting On Hole Burning, Single Molecule, And Related Spectroscopies, 2009, Palm Cove, Australia. [CrossRef]
  37. D. Dexter, C. Klick, and G. Russell, “Criterion for the occurrence of luminescence,” Phys. Rev.100, 603–605 (1955). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited