OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 19996–20001

Ultraviolet single-frequency coupled optofluidic ring resonator dye laser

Xin Tu, Xiang Wu, Ming Li, Liying Liu, and Lei Xu  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 19996-20001 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1058 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultraviolet single-frequency lasing is realized in a coupled optofluidic ring resonator (COFRR) dye laser that consists of a thin-walled capillary microfluidic ring resonator and a cylindrical resonator. The whispering gallery modes (WGMs) in each resonator couple to each other and generate single-frequency laser emission. Single-frequency lasing occurs at 386.75 nm with a pump threshold of 5.9 μJ/mm2. The side-mode-suppression ratio (SMSR) is about 20 dB. Moreover, the laser emits mainly in two directions, and each of them has a divergence of only 10.5°.

© 2012 OSA

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 6, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 13, 2012
Published: August 16, 2012

Xin Tu, Xiang Wu, Ming Li, Liying Liu, and Lei Xu, "Ultraviolet single-frequency coupled optofluidic ring resonator dye laser," Opt. Express 20, 19996-20001 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, “Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films,” Appl. Phys. Lett.73(25), 3656–3658 (1998). [CrossRef]
  2. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett.85(17), 3666–3668 (2004). [CrossRef]
  3. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, “Room-temperature continuous-wave lasing in GaN/InGaN microdisks,” Nat. Photonics1(1), 61–64 (2007). [CrossRef]
  4. Y.-G. Wang, C.-C. Chen, C.-H. Chiu, M.-Y. Kuo, M. H. Shih, and H.-C. Kuo, “Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett.98(13), 131110 (2011). [CrossRef]
  5. C.-C. Chen, M. H. Shih, Y.-C. Yang, and H.-C. Kuo, “Ultraviolet GaN-based microdisk laser with AlN/AlGaN distributed Bragg reflector,” Appl. Phys. Lett.96(15), 151115 (2010). [CrossRef]
  6. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  7. S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett.98(1), 011101 (2011). [CrossRef]
  8. R. Chen, H. D. Sun, T. Wang, K. N. Hui, and H. W. Choi, “Optically pumped ultraviolet lasing from nitride nanopillars at room temperature,” Appl. Phys. Lett.96(24), 241101 (2010). [CrossRef]
  9. K. H. Li, Z. Ma, and H. W. Choi, “Single-mode whispering gallery lasing from metal-clad GaN nanopillars,” Opt. Lett.37(3), 374–376 (2012). [CrossRef] [PubMed]
  10. K. M. Dzurko, D. F. Welch, D. R. Scifres, and A. Hardy, “1W single-mode edge-emitting DBR ring oscillators,” IEEE Photon. Technol. Lett.5(4), 369–371 (1993). [CrossRef]
  11. M. P. Nesnidal, L. J. Mawst, A. Bhattacharya, D. Botez, L. DiMarco, J. C. Connolly, and J. H. Abeles, “Single-frequency, single-spatial-mode ROW-DFB diode laser arrays,” IEEE Photon. Technol. Lett.8(2), 182–184 (1996). [CrossRef]
  12. X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao, “Ultraviolet photonic crystal laser,” Appl. Phys. Lett.96, 241101 (2010).
  13. L. Shang, L. Liu, and L. Xu, “Single-frequency coupled asymmetric microcavity laser,” Opt. Lett.33(10), 1150–1152 (2008). [CrossRef] [PubMed]
  14. X. Wu, Y. Sun, J. D. Suter, and X. Fan, “Single mode coupled optofluidic ring resonator dye lasers,” Appl. Phys. Lett.94(24), 241109 (2009). [CrossRef]
  15. W. Lee, H. Li, J. D. Suter, K. Reddy, Y. Sun, and X. Fan, “Tunable single mode lasing from an on-chip optofluidic ring resonator laser,” Appl. Phys. Lett.98(6), 061103 (2011). [CrossRef]
  16. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic theory of coupling from tapered fibers and half-blocks in microsphere resonators,” J. Lightwave Technol.17(4), 704–715 (1999). [CrossRef]
  17. I. M. White, H. Oveys, X. Fan, T. L. Smith, and J. Zhang, “Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides,” Appl. Phys. Lett.89(19), 191106 (2006). [CrossRef]
  18. T. Carmon, S. Y. T. Wang, E. P. Ostby, and K. J. Vahala, “Wavelength-independent coupler from fiber to an on-chip cavity, demonstrated over an 850nm span,” Opt. Express15(12), 7677–7681 (2007). [CrossRef] [PubMed]
  19. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express15(23), 15523–15530 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited