OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20021–20027

Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler

Yunhong Ding, Liu Liu, Christophe Peucheret, and Haiyan Ou  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20021-20027 (2012)
http://dx.doi.org/10.1364/OE.20.020021


View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polarization splitter and rotator (PSR) based on a tapered directional coupler with relaxed fabrication tolerance is proposed and demonstrated on the silicon-on-insulator platform. The device is simply constructed by parallel-coupling a narrow silicon waveguide with a linearly tapered wider waveguide. Compared to previously reported PSRs based on a normal directional coupler, which suffer from stringent requirements on the accuracy of the narrow waveguide width, the introduced tapered structure of the wide waveguide can be used to compensate the fabrication errors of the narrow waveguide. In addition, only a single step of exposure and etching is needed for the fabrication of the device. Similar high conversion efficiencies are experimentally demonstrated for a narrow waveguide width deviation of 14 nm with large tolerance to the coupler length.

© 2012 OSA

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.3120) Integrated optics : Integrated optics devices
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 26, 2012
Revised Manuscript: August 5, 2012
Manuscript Accepted: August 13, 2012
Published: August 16, 2012

Citation
Yunhong Ding, Liu Liu, Christophe Peucheret, and Haiyan Ou, "Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler," Opt. Express 20, 20021-20027 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, T. Jun-Ichi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005). [CrossRef]
  2. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express14(9), 3853–3863 (2006). [CrossRef] [PubMed]
  3. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express15(18), 11061–11072 (2007). [CrossRef] [PubMed]
  4. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun.210(1-2), 43–49 (2002). [CrossRef]
  5. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express15(4), 1567–1578 (2007). [CrossRef] [PubMed]
  6. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics1(1), 57–60 (2007). [CrossRef]
  7. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. I. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express16(7), 4872–4880 (2008). [CrossRef] [PubMed]
  8. Y. Ding, L. Liu, C. Peucheret, J. Xu, H. Ou, K. Yvind, X. Zhang, and D. Huang, “Towards polarization diversity on the SOI platform with simple fabrication process,” IEEE Photon. Technol. Lett.23(23), 1808–1810 (2011). [CrossRef]
  9. L. Chen, C. R. Doerr, and Y. K. Chen, “Compact polarization rotator on silicon for polarization-diversified circuits,” Opt. Lett.36(4), 469–471 (2011). [CrossRef] [PubMed]
  10. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express14(25), 12401–12408 (2006). [CrossRef] [PubMed]
  11. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express16(4), 2628–2635 (2008). [CrossRef] [PubMed]
  12. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett.36(7), 1059–1061 (2011). [CrossRef] [PubMed]
  13. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits,” Opt. Express19(13), 12646–12651 (2011). [CrossRef] [PubMed]
  14. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B25(5), 747–753 (2008). [CrossRef]
  15. J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron.16(1), 53–60 (2010). [CrossRef]
  16. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express19(11), 10940–10949 (2011). [CrossRef] [PubMed]
  17. A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt.2(3), 211–233 (1993). [CrossRef]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  19. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .
  20. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited