OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20028–20042

Vulnerability of CMOS image sensors in megajoule class laser harsh environment

V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20028-20042 (2012)
http://dx.doi.org/10.1364/OE.20.020028


View Full Text Article

Enhanced HTML    Acrobat PDF (1992 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

CMOS image sensors (CIS) are promising candidates as part of optical imagers for the plasma diagnostics devoted to the study of fusion by inertial confinement. However, the harsh radiative environment of Megajoule Class Lasers threatens the performances of these optical sensors. In this paper, the vulnerability of CIS to the transient and mixed pulsed radiation environment associated with such facilities is investigated during an experiment at the OMEGA facility at the Laboratory for Laser Energetics (LLE), Rochester, NY, USA. The transient and permanent effects of the 14 MeV neutron pulse on CIS are presented. The behavior of the tested CIS shows that active pixel sensors (APS) exhibit a better hardness to this harsh environment than a CCD. A first order extrapolation of the reported results to the higher level of radiation expected for Megajoule Class Laser facilities (Laser Megajoule in France or National Ignition Facility in the USA) shows that temporarily saturated pixels due to transient neutron-induced single event effects will be the major issue for the development of radiation-tolerant plasma diagnostic instruments whereas the permanent degradation of the CIS related to displacement damage or total ionizing dose effects could be reduced by applying well known mitigation techniques.

© 2012 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(040.6070) Detectors : Solid state detectors
(110.2970) Imaging systems : Image detection systems
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(350.5610) Other areas of optics : Radiation
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(280.5395) Remote sensing and sensors : Plasma diagnostics

ToC Category:
Detectors

History
Original Manuscript: June 27, 2012
Revised Manuscript: August 1, 2012
Manuscript Accepted: August 2, 2012
Published: August 16, 2012

Citation
V. Goiffon, S. Girard, A. Chabane, P. Paillet, P. Magnan, P. Cervantes, P. Martin-Gonthier, J. Baggio, M. Estribeau, J.-L. Bourgade, S. Darbon, A. Rousseau, V. Yu. Glebov, G. Pien, and T. C. Sangster, "Vulnerability of CMOS image sensors in megajoule class laser harsh environment," Opt. Express 20, 20028-20042 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20028


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. R. Hopkinson, “Radiation effects in a CMOS active pixel sensor,” IEEE Trans. Nucl. Sci.47(6), 2480–2484 (2000). [CrossRef]
  2. J. Bogaerts, B. Dierickx, G. Meynants, and D. Uwaerts, “Total dose and displacement damage effects in a radiation-hardened CMOS APS,” IEEE Trans. Electron. Dev.50(1), 84–90 (2003). [CrossRef]
  3. V. Goiffon and P. Magnan, “Radiation Damages in CMOS Active Pixel Sensors,” in Imaging Systems Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper IMA3. http://www.opticsinfobase.org/abstract.cfm?URI=IS-2011-IMA3
  4. A. M. Armani, P. Barrochin, F. Joffre, R. Gaillard, F. Saigné, and J. L. Mainguy, “Enhancement of the Total Dose Tolerance of a Commercial CMOS Active Pixel Sensor by Use of Thermal Annealing,” in Proceedings of the Conference on Radiation Effects On Components and System, paper PD2 (2011).
  5. T. P. Ma and P. V. Dressendorfer, Ionizing Radiation Effects in MOS Devices and Circuits (Wiley-Interscience, 1989).
  6. J. R. Srour, C. J. Marshall, and P. W. Marshall, “Review of displacement damage effects in silicon devices,” IEEE Trans. Nucl. Sci.50(3), 653–670 (2003). [CrossRef]
  7. J. L. Bourgade, V. Allouche, J. Baggio, C. Bayer, F. Bonneau, C. Chollet, S. Darbon, L. Disdier, D. Gontier, M. Houry, H. P. Jacquet, J. P. Jadaud, J. L. Leray, I. Masclet-Gobin, J. P. Negre, J. Raimbourg, B. Villette, I. Bertron, J. M. Chevalier, J. M. Favier, J. Gazave, J. C. Gomme, F. Malaise, J. P. Seaux, V. Y. Glebov, P. Jaanimagi, C. Stoeckl, T. C. Sangster, G. Pien, R. A. Lerche, and E. R. Hodgson, “New constraints for plasma diagnostics development due to the harsh environment of MJ class lasers,” Rev. Sci. Instrum.75(10), 4204–4212 (2004). [CrossRef]
  8. J. L. Bourgade, R. Marmoret, S. Darbon, R. Rosch, P. Troussel, B. Villette, V. Glebov, W. Shmayda, J. C. Gommé, Y. Le Tonqueze, F. Aubard, J. Baggio, S. Bazzoli, F. Bonneau, J. Y. Boutin, T. Caillaud, C. Chollet, P. Combis, L. Disdier, J. Gazave, S. Girard, D. Gontier, P. Jaanimagi, H. P. Jacquet, J. P. Jadaud, O. Landoas, J. Legendre, J. L. Leray, R. Maroni, D. D. Meyerhofer, J. L. Miquel, F. J. Marshall, I. Masclet-Gobin, G. Pien, J. Raimbourg, C. Reverdin, A. Richard, D. Rubins de Cervens, C. T. Sangster, J. P. Seaux, G. Soullie, C. Stoeckl, I. Thfoin, L. Videau, and C. Zuber, “Present LMJ diagnostics developments integrating its harsh environment,” Rev. Sci. Instrum.795(10), (2008).
  9. S. Girard, Y. Ouerdane, M. Bouazaoui, C. Marcandella, A. Boukenter, L. Bigot, and A. Kudlinski, “Transient radiation-induced effects on solid core microstructured optical fibers,” Opt. Express19(22), 21760–21767 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-19-22-21760 . [CrossRef] [PubMed]
  10. E. R. Fossum, “CMOS image sensors: Electronic camera-on-a-chip,” IEEE Trans. Electron. Dev.44(10), 1689–1698 (1997). [CrossRef]
  11. P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci.50(3), 583–602 (2003). [CrossRef]
  12. E. Pailharey, J. Baggio, C. D'hose, and O. Musseau, “Reliability of 1300 nm laser diode for space applications,” Proc. SPIE3872, 139–147 (1999). [CrossRef]
  13. Y. Tanimura and T. Iida, “Effects of DD and DT neutron irradiation on some Si devices for fusion diagnostics,” J. Nucl. Mater.258(263), 1812–1816 (1998). [CrossRef]
  14. J. Baggio, M. Martinez, C. D'hose, and O. Musseau, “Analysis of transient effects induced by neutrons on a CCD image sensor,” Proc. SPIE4547, 105–115 (2002). [CrossRef]
  15. A. Fish and O. Yadid-Pecht, “Active Pixel Sensor Design: From Pixels to Systems,” in CMOS Imagers (Springer, 2004), 99–139.
  16. J. Killiany, “Radiation effects on silicon charge-coupled devices,” IEEE Trans. Compon., Hybrids, Manuf. Technol.1, 353–365 (1978).
  17. A. M. Chugg, R. Jones, M. J. Moutrie, J. R. Armstrong, D. B. S. King, and N. Moreau, “Single particle dark current spikes induced in CCDs by high energy neutrons,” IEEE Trans. Nucl. Sci.50(6), 2011–2017 (2003). [CrossRef]
  18. J. R. Srour and D. H. Lo, “Universal damage factor for radiation-induced dark current in silicon devices,” IEEE Trans. Nucl. Sci.47(6), 2451–2459 (2000). [CrossRef]
  19. C. Virmontois, V. Goiffon, P. Magnan, S. Girard, O. Saint-Pé, S. Petit, G. Rolland, and A. Bardoux, “Similarities between proton and neutron induced dark current distribution in CMOS image sensors,” IEEE Trans. Nucl. Sci.57(4), (2010).
  20. C. Virmontois, “Analyse des effets des déplacements atomiques induits par l’environnement radiatif spatial sur la conception des imageurs CMOS,” Ph.D. Thesis (2012).
  21. I. Hopkins and G. Hopkinson, “Random telegraph signals from proton-irradiated CCDs,” IEEE Trans. Nucl. Sci.40(6), 1567–1574 (1993). [CrossRef]
  22. C. Virmontois, V. Goiffon, P. Magnan, S. Girard, C. Inguimbert, S. Petit, G. Rolland, and O. Saint-Pe, “Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology,” IEEE Trans. Nucl. Sci.57(6), 3101–3108 (2010).
  23. G. Yates and B. Turko, “Circumvention of radiation-induced noise in CCD and CID imagers,” IEEE Trans. Nucl. Sci.33(1), 2214–2222 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited