OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20043–20058

Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides

Tao Chen, Junqiang Sun, and Linsen Li  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20043-20058 (2012)
http://dx.doi.org/10.1364/OE.20.020043


View Full Text Article

Enhanced HTML    Acrobat PDF (2899 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we derive the couple-mode equations for third-order nonlinear effects in photonic crystal waveguides by employing the modal theory. These nonlinear interactions include self-phase modulation, cross-phase modulation and degenerate four-wave mixing. The equations similar to that in nonlinear fiber optics could be expanded and applied for third-order nonlinear processes in other periodic waveguides. Based on the equations, we systematically analyze the group-velocity dispersion, optical propagation loss, effective interaction area, slow light enhanced factor and phase mismatch for a slow light engineered silicon photonic crystal waveguide. Considering the two-photon and free-carrier absorptions, the wavelength conversion efficiencies in two low-dispersion regions are numerically simulated by utilizing finite difference method. Finally, we investigate the influence of slow light enhanced multiple four-wave-mixing process on the conversion efficiency.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4223) Nonlinear optics : Nonlinear wave mixing
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 23, 2012
Revised Manuscript: May 13, 2012
Manuscript Accepted: August 6, 2012
Published: August 17, 2012

Citation
Tao Chen, Junqiang Sun, and Linsen Li, "Modal theory of slow light enhanced third-order nonlinear effects in photonic crystal waveguides," Opt. Express 20, 20043-20058 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20043


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics2, 465–473 (2008). [CrossRef]
  2. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express17, 2944–2953 (2009). [CrossRef] [PubMed]
  3. C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. Pelusi, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, “Slow light enhanced nonlinear optics in silicon photonic crystal waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 344–356 (2010). [CrossRef]
  4. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. Vy Tran, S. Combrié, A. De Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express17, 552–557 (2009). [CrossRef] [PubMed]
  5. S. Combrié, Q. Tran, A. De Rossi, C. Husko, and P. Colman, “High quality GaInP nonlinear photonic crystals with minimized nonlinear absorption,” Appl. Phys. Lett.95, 221108 (2009). [CrossRef]
  6. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, “Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect,” Opt. Express17, 7206–7216 (2009). [CrossRef] [PubMed]
  7. J. McMillan, M. Yu, D. Kwong, and C. Wong, “Observation of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides,” Appl. Phys. Lett.93, 251105 (2008). [CrossRef]
  8. X. Checoury, Z. Han, and P. Boucaud, “Stimulated Raman scattering in silicon photonic crystal waveguides under continuous excitation,” Phys. Rev. B82, 041308 (2010). [CrossRef]
  9. B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. Krauss, “Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides,” Nat. Photonics3, 206–210 (2009). [CrossRef]
  10. C. Monat, C. Grillet, B. Corcoran, D. J. Moss, B. J. Eggleton, T. P. White, and T. F. Krauss, “Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics,” Opt. Express18, 6831–6840 (2010). [CrossRef] [PubMed]
  11. J. F. McMillan, M. Yu, D.-L. Kwong, and C. W. Wong, “Observation of four-wave mixing in slow-light silicon photonic crystal waveguides,” Opt. Express18, 15484–15497 (2010). [CrossRef] [PubMed]
  12. C. Xiong, C. Monat, A. Clark, C. Grillet, G. Marshall, M. Steel, J. Li, L. O’Faolain, T. Krauss, J. Rarity, and B. J. Eggleton, “Slow-light enhanced correlated photon pair generation in a silicon photonic crystal waveguide,” Opt. Lett.36, 3413–3415 (2011). [CrossRef] [PubMed]
  13. P. Colman, C. Husko, S. Combrié, I. Sagnes, C. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics4, 862–868 (2010). [CrossRef]
  14. M. Ebnali-Heidari, C. Monat, C. Grillet, and M. Moravvej-Farshi, “A proposal for enhancing four-wave mixing in slow light engineered photonic crystal waveguides and its application to optical regeneration,” Opt. Express17, 18340–18353 (2009). [CrossRef] [PubMed]
  15. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express16, 6227–6232 (2008). [CrossRef] [PubMed]
  16. S. Schulz, L. O’Faolain, D. Beggs, T. White, A. Melloni, and T. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt.12, 104004 (2010). [CrossRef]
  17. V. Eckhouse, I. Cestier, G. Eisenstein, S. Combrié, P. Colman, A. De Rossi, M. Santagiustina, C. Someda, and G. Vadalà, “Highly efficient four wave mixing in GaInP photonic crystal waveguides,” Opt. Lett.35, 1440–1442 (2010). [CrossRef] [PubMed]
  18. I. Cestier, A. Willinger, V. Eckhouse, G. Eisenstein, S. CombriÚ, P. Colman, G. Lehoucq, and A. De Rossi, “Time domain switching/demultiplexing using four wave mixing in GaInP photonic crystal waveguides,” Opt. Express19, 6093–6099 (2011). [CrossRef] [PubMed]
  19. I. Cestier, A. Willinger, P. Colman, S. Combrié, G. Lehoucq, A. De Rossi, and G. Eisenstein, “Efficient parametric interactions in a low loss GaInP photonic crystal waveguide,” Opt. Lett.36, 3936–3938 (2011). [CrossRef] [PubMed]
  20. P. Colman, I. Cestier, A. Willinger, S. Combrié, G. Lehoucq, G. Eisenstein, and A. De Rossi, “Observation of parametric gain due to four-wave mixing in dispersion engineered GaInP photonic crystal waveguides,” Opt. Lett.36, 2629–2631 (2011). [CrossRef] [PubMed]
  21. C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. Eggleton, T. White, L. O’Faolain, J. Li, and T. Krauss, “Four-wave mixing in slow light engineered silicon photonic crystal waveguides,” Opt. Express18, 22915–22927 (2010). [CrossRef] [PubMed]
  22. B. Corcoran, M. D. Pelusi, C. Monat, J. Li, L. O’Faolain, T. F. Krauss, and B. J. Eggleton, “Ultracompact 160Gbaud all-optical demultiplexing exploiting slow light in an engineered silicon photonic crystal waveguide,” Opt. Lett.36, 1728–1730 (2011). [CrossRef] [PubMed]
  23. J. Li, L. O’Faolain, I. Rey, and T. Krauss, “Four-wave mixing in photonic crystal waveguides: slow light enhancement and limitations,” Opt. Express19, 4458–4463 (2011). [CrossRef] [PubMed]
  24. N. Panoiu, J. McMillan, and C. Wong, “Theoretical analysis of pulse dynamics in silicon photonic crystal wire waveguides,” IEEE J. Sel. Top. Quantum Electron.16, 257–266 (2010). [CrossRef]
  25. M. Santagiustina, C. Someda, G. Vadala, S. Combrie, and A. De Rossi, “Theory of slow light enhanced four-wave mixing in photonic crystal waveguides,” Opt. Express18, 21024–21029 (2010). [CrossRef] [PubMed]
  26. S. Roy, M. Santagiustina, P. Colman, S. Combrie, and A. De Rossi, “Modeling the Dispersion of the Nonlinearity in Slow Mode Photonic Crystal Waveguides,” IEEE Photon. J.4, 224–233 (2012). [CrossRef]
  27. G. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 4th ed. (Elsevier Science, New York, 2007).
  28. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express19, 19861–19874 (2011). [CrossRef] [PubMed]
  29. C. Bao, J. Hou, H. Wu, E. Cassan, L. Chen, D. Gao, and X. Zhang, “Flat band slow light with high coupling efficiency in one-dimensional grating waveguides,” IEEE Photon. Technol. Lett.24, 7–9 (2012). [CrossRef]
  30. A. Mock, L. Lu, and J. O’Brien, “Space group theory and Fourier space analysis of two-dimensional photonic crystal waveguides,” Phys. Rev. B81, 155115 (2010). [CrossRef]
  31. A. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  32. D. Michaelis, U. Peschel, C. Wächter, and A. Bräuer, “Reciprocity theorem and perturbation theory for photonic crystal waveguides,” Phys. Rev. E68, 065601–065601 (2003). [CrossRef]
  33. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8, 173–190 (2001). [CrossRef] [PubMed]
  34. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B77, 115124 (2008). [CrossRef]
  35. R. Iliew, C. Etrich, T. Pertsch, F. Lederer, and Y. Kivshar, “Huge enhancement of backward second-harmonic generation with slow light in photonic crystals,” Phys. Rev. A81, 023820 (2010). [CrossRef]
  36. A. Yariv, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, USA, 2007).
  37. T. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D: Appl. Phys.40, 2666–2670 (2007). [CrossRef]
  38. M. Soljacic and J. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater.3, 211–220 (2004). [CrossRef] [PubMed]
  39. L. O’Faolain, S. Schulz, D. Beggs, T. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express18, 27627–27638 (2010). [CrossRef]
  40. S. Hughes, L. Ramunno, J. Young, and J. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett.94, 033903 (2005). [CrossRef] [PubMed]
  41. L. O’Faolain, T. White, D. O’Brien, X. Yuan, M. Settle, and T. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express15, 13129–13138 (2007). [CrossRef]
  42. E. Centeno and C. Ciracì, “Theory of backward second-harmonic localization in nonlinear left-handed media,” Phys. Rev. B78, 235101 (2008). [CrossRef]
  43. L. Yin and G. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32, 2031–2033 (2007). [CrossRef] [PubMed]
  44. Q. Tran, S. Combrié, P. Colman, and A. De Rossi, “Photonic crystal membrane waveguides with low insertion losses,” Appl. Phys. Lett.95, 061105 (2009). [CrossRef]
  45. X. Liu, “Theory and experiments for multiple four-wave-mixing processes with multifrequency pumps in optical fibers,” Phys. Rev. A77, 043818 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited