OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20170–20180

Characterization of a high coherence, Brillouin microcavity laser on silicon

Jiang Li, Hansuek Lee, Tong Chen, and Kerry J. Vahala  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20170-20180 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1090 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently, a high efficiency, narrow-linewidth, chip-based stimulated Brillouin laser (SBL) was demonstrated using an ultra-high-Q, silica-on-silicon resonator. In this work, this novel laser is more fully characterized. The Schawlow Townes linewidth formula for Brillouin laser operation is derived and compared to linewidth data, and the fitting is used to measure the mechanical thermal quanta contribution to the Brillouin laser linewidth. A study of laser mode pulling by the Brillouin optical gain spectrum is also presented, and high-order, cascaded operation of the SBL is demonstrated. Potential application of these devices to microwave sources and phase-coherent communication is discussed.

© 2012 OSA

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.5890) Nonlinear optics : Scattering, stimulated
(290.5900) Scattering : Scattering, stimulated Brillouin

ToC Category:
Lasers and Laser Optics

Original Manuscript: July 2, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 12, 2012
Published: August 20, 2012

Jiang Li, Hansuek Lee, Tong Chen, and Kerry J. Vahala, "Characterization of a high coherence, Brillouin microcavity laser on silicon," Opt. Express 20, 20170-20180 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Fortier, M. Kirchner, F. Quinlan, J. Taylor, J. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. Oates, and S. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics5, 425–429 (2011). [CrossRef]
  2. E. IP, A. Lau, D. Barros, and J. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16, 753–791 (2008). [CrossRef] [PubMed]
  3. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, and M. Yoshida, “256-QAM (64 Gb/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz,” IEEE Photon. Technol. Lett.22, 185–187 (2010). [CrossRef]
  4. C. Karlsson, F. Olsson, D. Letalick, and M. Harris, “All-fiber multifunction CW coherent laser radar at 1.55 μm for range, speed, vibration, and wind measurements,” Appl. Opt.39, 3716–3726 (2000). [CrossRef]
  5. R. Rafac, B. Young, J. Beall, W. Itano, D. Wineland, and J. Berquist, “Sub-dekahertz Ultraviolet Spectroscopy of 199Hg+”, Phys. Rev. Lett.85, 2462–2465 (2000). [CrossRef] [PubMed]
  6. B. Young, F. Cruz, W. Itano, and J. Bergquist, “Visible lasers with aubhertz linewidths,” Phys. Rev. Lett.82, 3799–3802 (1999). [CrossRef]
  7. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450, 1214–1217 (2007). [CrossRef]
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332, 555–559 (2011). [CrossRef] [PubMed]
  9. L. Yang, T. Lu, T. Carmon, B. Min, and K. J. Vahala, “A 4-Hz fundamental linewidth on-chip microlaser,” Conference on Lasers and Electro-Optics (CLEO), Technical Digest Series (CD) (Optical Society of America, 2007), paper CMR2.
  10. T. Lu, L. Yang, T. Carmon, B. Min, and K. J. Vahala, “Frequency noise of a microchip raman laser,” Conference on Lasers and Electro-Optics (CLEO), Technical Digest Series (CD) (Optical Society of America, 2009), paper CTuB3.
  11. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser,” Opt. Lett.352822–2824 (2010). [CrossRef] [PubMed]
  12. H. Lee, T. Chen, J. Li, K. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics6, 369–373 (2012). [CrossRef]
  13. S. P. Smith, F. Zarinetchi, and S. Ezekiel, “Narrow-linewidth stimulated Brillouin fiber laser and applications,” Opt. Lett.16393–395 (1991). [CrossRef] [PubMed]
  14. Y. Okawachi, M. Bigelgow, J. Sharping, Z. Zhu, A. Schweinsberg, D. Gauthier, R. Boyd, and A. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett.94, 153902 (2005). [CrossRef] [PubMed]
  15. I. Grudinin, A. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode Resonator,” Phys. Rev. Lett.102, 043902 (2009). [CrossRef] [PubMed]
  16. M. Tomes and T. Carmon, “Photonic micro-electromechanical systems vibrating at X-band (11-GHz) rates,” Phys. Rev. Lett.102, 113601 (2009). [CrossRef] [PubMed]
  17. R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011) [CrossRef] [PubMed]
  18. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature421, 925–928 (2003). [CrossRef] [PubMed]
  19. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to silica-microsphere whispering gallery mode system,” Phys. Rev. Lett.85, 74–77 (2000). [CrossRef] [PubMed]
  20. S. M. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett.91, 043902 (2003). [CrossRef] [PubMed]
  21. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity.” Opt. Commun.35, 441–444 (1980). [CrossRef]
  22. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys.4, 415–419 (2008). [CrossRef]
  23. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett.28, 1507–1509 (2003). [CrossRef] [PubMed]
  24. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Quantum Electron.10, 1219–1228 (2004). [CrossRef]
  25. A. Yariv, Quantum Electronics (Wiley, 1989).
  26. Z. Wu, L. Zhan, Q. Shen, J. Liu, X. Hu, and P. Xiao, “Ultrafine optical-frequency tunable Brillouin fiber laser based on fiber strain,” Opt. Lett.36, 3837–3839 (2011). [CrossRef] [PubMed]
  27. Y. R. Shen and N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev.137, A1787–A1805 (1965). [CrossRef]
  28. A. B. Matsko, V. S. Ilchenko, A. A. Savchenkov, and L. Maleki, “Highly nondegenerate all-resonant optical parametric oscillator,” Phys. Rev. A66, 043814 (2002). [CrossRef]
  29. I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, “Phonon laser action in a tunable two-level system,” Phys. Rev. Lett.104, 083901 (2010). [CrossRef] [PubMed]
  30. K. J. Vahala, “Back-action limit of linewidth in an optomechnical oscillator,” Phys. Rev. A78, 023832 (2008). [CrossRef]
  31. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A42, 5514 (1990). [CrossRef] [PubMed]
  32. A. Debut, S. Randoux, and J. Zemmouri, “Linewidth narrowing in Brillouin lasers: theoretical analysis,” Phys. Rev. A62023803 (2000). [CrossRef]
  33. A. Debut, S. Randoux, and J. Zemmouri, “Experimental and theoretical study of linewidth narrowing in Brillouin fiber ring lasers,” J. Opt. Soc. Am. B18, 556–567 (2001). [CrossRef]
  34. M. Okai, M. Suzuki, and T. Taniwatari, “Strained multiquantum-well corrugation-pitch-modulated distributed feedback laser with ultranarrow (3.6 kHz) spectral linewidth,” Electron. Lett.29, 1696–1697 (1993). [CrossRef]
  35. M. C. Gross, P. T. Callahan, T. R. Clark, D. Novak, R. B. Waterhouse, and M. L. Dennis, “Tunable millimeter-wave frequency synthesis up to 100 GHz by dual-wavelength Brillouin fiber laser,” Opt. Express18, 13321–13330 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited