OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20210–20221

Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function

Yongpin P. Chen, Wei E. I. Sha, Wallace C. H. Choy, Lijun Jiang, and Weng Cho Chew  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20210-20221 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous surface integral equation approach is proposed to study the spontaneous emission of a quantum emitter embedded in a multilayered plasmonic structure with the presence of arbitrarily shaped metallic nanoscatterers. With the aid of the Fermi’s golden rule, the spontaneous emission of the emitter can be calculated from the local density of states, which can be further expressed by the imaginary part of the dyadic Green’s function of the whole electromagnetic system. To obtain this Green’s function numerically, a surface integral equation is established taking into account the scattering from the metallic nanoscatterers. Particularly, the modeling of the planar multilayered structure is simplified by applying the layered medium Green’s function to reduce the computational domain and hence the memory requirement. Regarding the evaluation of Sommerfeld integrals in the layered medium Green’s function, the discrete complex image method is adopted to accelerate the evaluation process. This work offers an accurate and efficient simulation tool for analyzing complex multilayered plasmonic system, which is commonly encountered in the design of optical elements and devices.

© 2012 OSA

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

Original Manuscript: July 5, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 11, 2012
Published: August 20, 2012

Virtual Issues
Vol. 7, Iss. 10 Virtual Journal for Biomedical Optics

Yongpin P. Chen, Wei E. I. Sha, Wallace C. H. Choy, Lijun Jiang, and Weng Cho Chew, "Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green’s function," Opt. Express 20, 20210-20221 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, “Design of plasmonic nanoantennae for enhancing spontaneous emission,” Opt. Lett.32, 1623–1625 (2007). [CrossRef] [PubMed]
  2. M. A. Noginov, H. Li, Yu. A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. E. Bonner, M. Mayy, Z. Jacob, and E. E. Narimanov, “Controlling spontaneous emission with metamaterials,” Opt. Lett.35, 1863–1865 (2010). [CrossRef] [PubMed]
  3. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman1, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals,” Nature430, 654–657 (2004). [CrossRef] [PubMed]
  4. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev.69, 681 (1946).
  5. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2005).
  6. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006). [CrossRef]
  7. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3, 601–605 (2004). [CrossRef] [PubMed]
  8. J.-J. Greffet, “Nanoantennas for light emission,” Science308, 1561–1563 (2005). [CrossRef] [PubMed]
  9. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010). [CrossRef] [PubMed]
  10. K. G. Lee, X. W. Chen, H. Eghlidi, P. Kukura, R. Lettow, A. Renn, V. Sandoghdar, and S. Götzinger, “A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency,” Nat. Photo.5, 166–169 (2011). [CrossRef]
  11. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B76, 245403 (2007). [CrossRef]
  12. X. W. Chen, W. C. H. Choy, S. He, and P.C. Chui, “Comprehensive analysis and optimal design of top-emitting organic light emitting devices,” J. Appl. Phys.101, 113107 (2007). [CrossRef]
  13. X. W. Chen, W. C. H. Choy, and S. He, “Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes,” IEEE/OSA J. Display Technol.3, 110–117 (2007). [CrossRef]
  14. W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, Norwood, 2001).
  15. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag.14, 302–307 (1966). [CrossRef]
  16. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, 2003). [CrossRef] [PubMed]
  17. W. C. Chew, M. S. Tong, and B. Hu, Integral Equations for Electromagnetic and Elastic Waves (Morgan & Claypool Publishers, 2009).
  18. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26, 732–740 (2009). [CrossRef]
  19. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27, 2261–2271 (2010). [CrossRef]
  20. J. M. Taboada, J. Rivero, F. Obelleiro, M. G. Araújo, and L. Landesa, “Method-of-moments formulation for the analysis of plasmonic nano-optical antennas,” J. Opt. Soc. Am. A28, 1341–1348 (2011). [CrossRef]
  21. M. G. Araújo, J. M. Taboada, D. M. Solís, J. Rivero, L. Landesa, and F. Obelleiro, “Comparison of surface integral equation formulations for electromagnetic analysis of plasmonic nanoscatterers,” Opt. Express20, 9161–9171 (2012). [CrossRef] [PubMed]
  22. K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in integral equation formulations,” IEEE Trans. Antennas Propagat.45, 508–519 (1997). [CrossRef]
  23. Y. P. Chen, W. C. Chew, and L. Jiang, “A new Green’s function formulation for modeling homogeneous objects in layered medium,” IEEE Trans. Antennas Propagat. accepted for publication.
  24. D. G. Fang, J. J. Yang, and G. Y. Delisle, “Discrete image theory for horizontal electric dipoles in a multilayered medium,” Proc. Inst. Elect. Eng.135, 297–303 (1988).
  25. E. N. Economou, Green’s Functions in Quantum Physics (Springer, Berlin, 2006). [PubMed]
  26. R. Carminati, J.-J. Greffet, C. Henkel, and J.M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Comm.261, 368–375, 2006. [CrossRef]
  27. W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990; IEEE Press, 1995).
  28. X. W. Chen, M. Agio, and V. Sandoghdar, “Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission,” Phys. Rev. Lett.108, 233001 (2012). [CrossRef]
  29. A. J. Poggio and E. K. Miller, “Integral equation solutions of three dimensional scattering problems,” in Computer Techniques for Electromagnetics (Permagon, 1973).
  30. Y. Chang and R. Harrington, “A surface formulation for characteristic modes of material bodies,” IEEE Trans. Antennas Propag.25, 789–795 (1977). [CrossRef]
  31. T.-K. Wu and L. L. Tsai, “Scattering from arbitrarilyshaped lossy dielectric bodies of revolution,” Radio Sci.12, 709–718 (1977). [CrossRef]
  32. S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by surface of arbitrary shape,” IEEE Trans. Antennas Propagat.30, 409–418 (1982). [CrossRef]
  33. W. C. Chew, J. L. Xiong, and M. A. Saville, “A matrix-friendly formulation of layered medium Green’s function,” IEEE Antennas Wireless Propagat. Lett.5, 490–494 (2006). [CrossRef]
  34. T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the parameters of a sum of complex exponentials,” lEEE Antennas Propagat. Magazine37, 48–55 (1995). [CrossRef]
  35. A. Alparslan, M. I. Aksun, and K. A. Michalski, “Closed-form Green’s functions in planar layered media for all ranges and materials,” IEEE Trans. Microw. Theory Tech.58, 602–613 (2010). [CrossRef]
  36. Y. P. Chen, W. C. Chew, and L. Jiang, “A novel implementation of discrete complex image method for layered medium Green’s function,” IEEE Antennas Wireless Propagat. Lett.10, 419–422 (2011). [CrossRef]
  37. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37, 5271–5283 (1998). [CrossRef]
  38. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys.25, 377–445 (1908). [CrossRef]
  39. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photo.3, 654–657 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited