OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20238–20254

Semi-guiding high-aspect-ratio core (SHARC) fiber amplifiers with ultra-large core area
for single-mode kW operation
in a compact coilable package

John R. Marciante, Vladimir V. Shkunov, and David A. Rockwell  »View Author Affiliations

Optics Express, Vol. 20, Issue 18, pp. 20238-20254 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new class of optical fiber, the SHARC fiber, is analyzed in a high-power fiber amplifier geometry using the gain-filtering properties of confined-gain dopants. The high-aspect-ratio (~30:1) rectangular core allows mode-area scaling well beyond 10,000 μm2, which is critical to high-pulse-energy or narrow-linewidth high-power fiber amplifiers. While SHARC fibers offer modally dependent edge loss at the wide “semi-guiding” edge of the waveguide, the inclusion of gain filtering adds further modal discrimination arising from the variation of the spatial overlap of the gain with the various modes. Both methods are geometric in form, such that the combination provides nearly unlimited scalability in mode area. Simulations show that for kW-class fiber amplifiers, only the fundamental mode experiences net gain (15 dB), resulting in outstanding beam quality. Further, misalignment of the seed beam due to offset, magnification, and tilt are shown to result in a small (few percent) efficiency penalty while maintaining kW-level output with 99% of the power in the fundamental mode for all cases.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(140.3280) Lasers and laser optics : Laser amplifiers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 27, 2012
Revised Manuscript: June 15, 2012
Manuscript Accepted: July 24, 2012
Published: August 20, 2012

John R. Marciante, Vladimir V. Shkunov, and David A. Rockwell, "Semi-guiding high-aspect-ratio core (SHARC) fiber amplifiers with ultra-large core area
for single-mode kW operation
in a compact coilable package," Opt. Express 20, 20238-20254 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63–B92 (2010). [CrossRef]
  2. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett.25(7), 442–444 (2000). [CrossRef] [PubMed]
  3. C. Liu, G. Chang, N. Litchinitser, A. Galvanauskas, D. Guertin, N. Jabobson, and K. Tankala, “Effectively Single-Mode Chirally-Coupled Core Fiber,” ASSP 2007, paper ME2.
  4. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett.31(12), 1797–1799 (2006). [CrossRef] [PubMed]
  5. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express13(4), 1055–1058 (2005). [CrossRef] [PubMed]
  6. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B24(8), 1689–1697 (2007). [CrossRef]
  7. J. R. Marciante, “Gain filtering for single-spatial-mode operation of large-mode-area fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron.15(1), 30–36 (2009). [CrossRef]
  8. D. A. Rockwell, V. V. Shkunov, and J. R. Marciante, “Semi-guiding high-aspect-ratio core (SHARC) fiber providing single-mode operation and an ultra-large core area in a compact coilable package,” Opt. Express19(15), 14746–14762 (2011). [CrossRef] [PubMed]
  9. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express14(1), 69–81 (2006). [CrossRef] [PubMed]
  10. R. C. G. Smith, A. M. Sarangan, Z. Jiang, and J. R. Marciante, “Direct measurement of bend-induced mode deformation in large-mode-area fibers,” Opt. Express20(4), 4436–4443 (2012). [CrossRef] [PubMed]
  11. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, “Active phase and polarization locking of a 1.4 kW fiber amplifier,” Opt. Lett.35(10), 1542–1544 (2010). [CrossRef] [PubMed]
  12. C. M. Zeringue, I. Dajani, and G. T. Moore, “Suppression of stimulated Brillouin scattering in optical fibers through phase-modulation: a time dependent model,” Proc. SPIE7914, 791409 (2011). [CrossRef]
  13. P. D. Dragic, C.-H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” CLEO 2006, paper CThZ3.
  14. D. Walton, S. Gray, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. Demeritt, and L. Zenteno, “High power, narrow linewidth fiber lasers,” Proc. SPIE6102, 610205 (2006). [CrossRef]
  15. L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol.28, 3156–3161 (2010).
  16. J. R. Marciante, R. G. Roides, V. V. Shkunov, and D. A. Rockwell, “Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering,” Opt. Lett.35(11), 1828–1830 (2010). [CrossRef] [PubMed]
  17. T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, J. Rothhardt, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Preferential gain photonic-crystal fiber for mode stabilization at high average powers,” Opt. Express19(9), 8656–8661 (2011). [CrossRef] [PubMed]
  18. T. Bhutta, J. I. Mackenzie, D. P. Shepherd, and R. J. Beach, “Spatial dopant profiles for transverse-mode selection in multimode waveguides,” J. Opt. Soc. Am. B19(7), 1539–1543 (2002). [CrossRef]
  19. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, “Low-heat high-power scaling using InGaAs diode-pumped Yb:YAG lasers,” IEEE J. Sel. Top. Quantum Electron.3(1), 105–116 (1997). [CrossRef]
  20. J. R. Marciante and J. D. Zuegel, “High-gain, polarization-preserving, Yb-doped fiber amplifier for low-duty-cycle pulse amplification,” Appl. Opt.45(26), 6798–6804 (2006). [CrossRef] [PubMed]
  21. OFS Laboratories has fabricated a SHARC fiber with refractive-index uniformity of 200 ppm across the core width (Private communications with D. J. Trevor, OFS Laboratories, 2012).
  22. H. Rao, M. J. Steel, R. Scarmozzino, and R. M. Osgood., “Complex propagators for evanescent waves in bidirectional beam propagation method,” J. Lightwave Technol.18(8), 1155–1160 (2000). [CrossRef]
  23. Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” IEEE J. Quantum Electron.26(8), 1335–1339 (1990). [CrossRef]
  24. J. Yamauchi, T. Ando, and H. Nakano, “Beam propagation analysis of optical fibres by alternating direction implicit method,” Electron. Lett.27(18), 1663–1666 (1991). [CrossRef]
  25. G. R. Hadley, “Transparent boundary condition for the beam propagation method,” IEEE J. Quantum Electron.28(1), 363–370 (1992). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics, 6th ed. (Permagon Press, 1991), pp 127–128.
  27. J. Oh, C. Headley, M. J. Andrejco, A. D. Yablon, and D. J. DiGiovanni, “Increased pulsed amplifier efficiency by manipulating the fiber dopant distribution,” CLEO 2006, paper CTuQ3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited