OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 18 — Aug. 27, 2012
  • pp: 20292–20308

Cascadable excitability in microrings

Thomas Van Vaerenbergh, Martin Fiers, Pauline Mechet, Thijs Spuesens, Rajesh Kumar, Geert Morthier, Benjamin Schrauwen, Joni Dambre, and Peter Bienstman  »View Author Affiliations


Optics Express, Vol. 20, Issue 18, pp. 20292-20308 (2012)
http://dx.doi.org/10.1364/OE.20.020292


View Full Text Article

Enhanced HTML    Acrobat PDF (3726 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To emulate a spiking neuron, a photonic component needs to be excitable. In this paper, we theoretically simulate and experimentally demonstrate cascadable excitability near a self-pulsation regime in high-Q-factor silicon-on-insulator microrings. For the theoretical study we use Coupled Mode Theory. While neglecting the fast energy and phase dynamics of the cavity light, we can still preserve the most important microring dynamics, by only keeping the temperature difference with the surroundings and the amount of free carriers as dynamical variables of the system. Therefore we can analyse the microring dynamics in a 2D phase portrait. For some wavelengths, when changing the input power, the microring undergoes a subcritical Andronov-Hopf bifurcation at the self-pulsation onset. As a consequence the system shows class II excitability. Experimental single ring excitability and self-pulsation behaviour follows the theoretic predictions. Moreover, simulations and experiments show that this excitation mechanism is cascadable.

© 2012 OSA

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4870) Nonlinear optics : Photothermal effects
(200.4700) Optics in computing : Optical neural systems
(230.1150) Optical devices : All-optical devices
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optics in Computing

History
Original Manuscript: May 10, 2012
Revised Manuscript: July 31, 2012
Manuscript Accepted: August 6, 2012
Published: August 20, 2012

Citation
Thomas Van Vaerenbergh, Martin Fiers, Pauline Mechet, Thijs Spuesens, Rajesh Kumar, Geert Morthier, Benjamin Schrauwen, Joni Dambre, and Peter Bienstman, "Cascadable excitability in microrings," Opt. Express 20, 20292-20308 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-18-20292


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Vandoorne, J. Dambre, D. Verstraeten, B. Schrauwen, and P. Bienstman, “Parallel reservoir computing using optical amplifiers,” IEEE Trans. Neural Netw.22, 1469–1481 (2011). [CrossRef] [PubMed]
  2. W. Maass, T. Natschläger, and H. Markram, “Real-time computing without stable states: A new framework for neural computation based on perturbations,” Neural Comput.14, 2531–2560 (2002). [CrossRef] [PubMed]
  3. E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1st ed. (The MIT Press, 2006). [PubMed]
  4. M. Brunstein, A. Yacomotti, I. Sagnes, F. Raineri, L. Bigot, and A. Levenson, “Excitability and self-pulsing in a photonic crystal nanocavity,” Phys. Rev. A85, 1–5 (2012). [CrossRef]
  5. W. Coomans, L. Gelens, S. Beri, J. Danckaert, and G. Van der Sande, “Solitary and coupled semiconductor ring lasers as optical spiking neurons,” Phys. Rev. E84, 1–8 (2011). [CrossRef]
  6. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, “Optical bistability and pulsating behaviour in Silicon-On-Insulator ring resonator structures,” Opt. Express13, 9623–9628 (2005). [CrossRef] [PubMed]
  7. A. Yacomotti, P. Monnier, F. Raineri, B. Bakir, C. Seassal, R. Raj, and J. Levenson, “Fast thermo-optical excitability in a two-dimensional photonic crystal,” Phys. Rev. Lett.97, 6–9 (2006). [CrossRef]
  8. W. H. P. Pernice, M. Li, and H. X. Tang, “Time-domain measurement of optical transport in silicon micro-ring resonators,” Opt. Express18, 18438–18452 (2010). [CrossRef] [PubMed]
  9. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator,” Opt. Express14, 817–831 (2006). [CrossRef] [PubMed]
  10. Q. Lin, T. J. Johnson, C. P. Michael, and O. Painter, “Adiabatic self-tuning in a silicon microdisk optical resonator,” Opt. Express16, 14801–14811 (2008). [CrossRef] [PubMed]
  11. M. Fiers, T. Van Vaerenbergh, K. Caluwaerts, D. Vande Ginste, B. Schrauwen, J. Dambre, and P. Bienstman, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” J. Opt. Soc. Am. B29, 896–900 (2011). [CrossRef]
  12. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express13, 801–820 (2005). [CrossRef] [PubMed]
  13. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields, 2nd ed. (Springer-Verlag, 1983).
  14. R. H. Clewley, W. E. Sherwood, M. D. LaMar, and J. M. Guckenheimer“PyDSTool, a software environment for dynamical systems modeling,” http://pydstool.sourceforge.net , (2007).
  15. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Time-domain and frequency-domain modeling of nonlinear optical components on circuit-level using a node-based approach,” Comp. Phys. Commun.181, 687–702 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited